Machine Learning Models with Preoperative Risk Factors and Intraoperative Hypotension Parameters Predict Mortality After Cardiac Surgery

Objectives: Machine learning models used to predict postoperative mortality rarely include intraoperative factors. Several intraoperative factors like hypotension (IOH), vasopressor-inotropes, and cardiopulmonary bypass (CPB) time are significantly associated with postoperative outcomes. The authors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiothoracic and vascular anesthesia 2021-03, Vol.35 (3), p.857-865
Hauptverfasser: Fernandes, Marta Priscila Bento, Armengol de la Hoz, Miguel, Rangasamy, Valluvan, Subramaniam, Balachundhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue 3
container_start_page 857
container_title Journal of cardiothoracic and vascular anesthesia
container_volume 35
creator Fernandes, Marta Priscila Bento
Armengol de la Hoz, Miguel
Rangasamy, Valluvan
Subramaniam, Balachundhar
description Objectives: Machine learning models used to predict postoperative mortality rarely include intraoperative factors. Several intraoperative factors like hypotension (IOH), vasopressor-inotropes, and cardiopulmonary bypass (CPB) time are significantly associated with postoperative outcomes. The authors explored the ability of machine learning models incorporating intraoperative risk factors to predict mortality after cardiac surgery. Design: Retrospective study. Setting: Tertiary hospital. Participants: A total of 5,015 adults who underwent cardiac surgery from 2008 to 2016. Intervention: None. Measurements and Main Results: The intraoperative phase was divided into the following: (1) CPB, (2) outside CPB, and (3) total surgery for quantifying IOH only. Phase-specific IOH parameters (area under the curve for mean arterial pressure
doi_str_mv 10.1053/j.jvca.2020.07.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430369806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053077020306595</els_id><sourcerecordid>2430369806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8d13cce7c8ff1fe345657c655624ec78e93037b2ce8f0ae5aa6cb682b402ebce3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoqXwBzggH7ns4rXX643EpYoorZSKio-zNTs72zps7GA7QfkH_GwcpcCN04w0zzyH92XsdSPqRmj1bl2v9wi1FFLUwtRCLp6w80YrWfWtlE_LXqhKGCPO2IuU1kI0jdbmOTtT0rRGCnXOft0CPjhPfEUQvfP3_DaMNCf-0-UHfhcpbClCdnvin136zq8Ac4iJgx_5jc8R_t2vD9uQyScXPL-DCBvKVMjiGB3m4o0ZZpcP_HIqB76EODpA_mUX7ykeXrJnE8yJXj3OC_bt6sPX5XW1-vTxZnm5qlDpLlf92ChEMthPUzORanWnDXZad7IlND0tlFBmkEj9JIA0QIdD18uhFZIGJHXB3p682xh-7Chlu3EJaZ7BU9glK9si6Ba96AoqTyjGkFKkyW6j20A82EbYY7Z2bY8N2GMDVhhbGihPbx79u2FD49-XP5EX4P0JKCnT3lG0CR15LClFwmzH4P7n_w3hc5qo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430369806</pqid></control><display><type>article</type><title>Machine Learning Models with Preoperative Risk Factors and Intraoperative Hypotension Parameters Predict Mortality After Cardiac Surgery</title><source>Elsevier ScienceDirect Journals</source><creator>Fernandes, Marta Priscila Bento ; Armengol de la Hoz, Miguel ; Rangasamy, Valluvan ; Subramaniam, Balachundhar</creator><creatorcontrib>Fernandes, Marta Priscila Bento ; Armengol de la Hoz, Miguel ; Rangasamy, Valluvan ; Subramaniam, Balachundhar</creatorcontrib><description>Objectives: Machine learning models used to predict postoperative mortality rarely include intraoperative factors. Several intraoperative factors like hypotension (IOH), vasopressor-inotropes, and cardiopulmonary bypass (CPB) time are significantly associated with postoperative outcomes. The authors explored the ability of machine learning models incorporating intraoperative risk factors to predict mortality after cardiac surgery. Design: Retrospective study. Setting: Tertiary hospital. Participants: A total of 5,015 adults who underwent cardiac surgery from 2008 to 2016. Intervention: None. Measurements and Main Results: The intraoperative phase was divided into the following: (1) CPB, (2) outside CPB, and (3) total surgery for quantifying IOH only. Phase-specific IOH parameters (area under the curve for mean arterial pressure &lt;65 mmHg), vasopressor-inotropes (norepinephrine equivalents), duration, and cross-clamp time, along with preoperative risk factors ,were incorporated into the models. The primary outcome was mortality. The following 5 models were applied to 3 intraoperative phases separately: (1) logistic regression, (2) random forests, (3) neural networks, (4) support vector machines, and (5) extreme gradient boosting (XGB). Mortality was predicted using area under the receiver operating characteristic curve. Of 5,015 patients included, 112 (2.2%) died. XGB model from the outside-CPB phase predicted mortality better with area under the receiver operating characteristic curve, 95% confidence interval (CI): 0.88(0.83-0.94); positive predictive value, 0.10(0.06-0.15); specificity 0.85 (0.83-0.87) and sensitivity 0.75 (0.57-0.90). Conclusion: XGB machine learning model from IOH outside the CPB phase seemed to offer a better discrimination, sensitivity, specificity, and positive predictive value compared with other models. Machine learning models incorporating intraoperative adverse factors might offer better predictive ability for risk stratification and triaging of patients after cardiac surgery.</description><identifier>ISSN: 1053-0770</identifier><identifier>EISSN: 1532-8422</identifier><identifier>DOI: 10.1053/j.jvca.2020.07.029</identifier><identifier>PMID: 32747203</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cardiac surgery ; intraoperative adverse factors ; intraoperative hypotension ; Machine learning ; mortality prediction</subject><ispartof>Journal of cardiothoracic and vascular anesthesia, 2021-03, Vol.35 (3), p.857-865</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8d13cce7c8ff1fe345657c655624ec78e93037b2ce8f0ae5aa6cb682b402ebce3</citedby><cites>FETCH-LOGICAL-c356t-8d13cce7c8ff1fe345657c655624ec78e93037b2ce8f0ae5aa6cb682b402ebce3</cites><orcidid>0000-0002-7203-2832 ; 0000-0001-7705-5796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1053/j.jvca.2020.07.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32747203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, Marta Priscila Bento</creatorcontrib><creatorcontrib>Armengol de la Hoz, Miguel</creatorcontrib><creatorcontrib>Rangasamy, Valluvan</creatorcontrib><creatorcontrib>Subramaniam, Balachundhar</creatorcontrib><title>Machine Learning Models with Preoperative Risk Factors and Intraoperative Hypotension Parameters Predict Mortality After Cardiac Surgery</title><title>Journal of cardiothoracic and vascular anesthesia</title><addtitle>J Cardiothorac Vasc Anesth</addtitle><description>Objectives: Machine learning models used to predict postoperative mortality rarely include intraoperative factors. Several intraoperative factors like hypotension (IOH), vasopressor-inotropes, and cardiopulmonary bypass (CPB) time are significantly associated with postoperative outcomes. The authors explored the ability of machine learning models incorporating intraoperative risk factors to predict mortality after cardiac surgery. Design: Retrospective study. Setting: Tertiary hospital. Participants: A total of 5,015 adults who underwent cardiac surgery from 2008 to 2016. Intervention: None. Measurements and Main Results: The intraoperative phase was divided into the following: (1) CPB, (2) outside CPB, and (3) total surgery for quantifying IOH only. Phase-specific IOH parameters (area under the curve for mean arterial pressure &lt;65 mmHg), vasopressor-inotropes (norepinephrine equivalents), duration, and cross-clamp time, along with preoperative risk factors ,were incorporated into the models. The primary outcome was mortality. The following 5 models were applied to 3 intraoperative phases separately: (1) logistic regression, (2) random forests, (3) neural networks, (4) support vector machines, and (5) extreme gradient boosting (XGB). Mortality was predicted using area under the receiver operating characteristic curve. Of 5,015 patients included, 112 (2.2%) died. XGB model from the outside-CPB phase predicted mortality better with area under the receiver operating characteristic curve, 95% confidence interval (CI): 0.88(0.83-0.94); positive predictive value, 0.10(0.06-0.15); specificity 0.85 (0.83-0.87) and sensitivity 0.75 (0.57-0.90). Conclusion: XGB machine learning model from IOH outside the CPB phase seemed to offer a better discrimination, sensitivity, specificity, and positive predictive value compared with other models. Machine learning models incorporating intraoperative adverse factors might offer better predictive ability for risk stratification and triaging of patients after cardiac surgery.</description><subject>cardiac surgery</subject><subject>intraoperative adverse factors</subject><subject>intraoperative hypotension</subject><subject>Machine learning</subject><subject>mortality prediction</subject><issn>1053-0770</issn><issn>1532-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EoqXwBzggH7ns4rXX643EpYoorZSKio-zNTs72zps7GA7QfkH_GwcpcCN04w0zzyH92XsdSPqRmj1bl2v9wi1FFLUwtRCLp6w80YrWfWtlE_LXqhKGCPO2IuU1kI0jdbmOTtT0rRGCnXOft0CPjhPfEUQvfP3_DaMNCf-0-UHfhcpbClCdnvin136zq8Ac4iJgx_5jc8R_t2vD9uQyScXPL-DCBvKVMjiGB3m4o0ZZpcP_HIqB76EODpA_mUX7ykeXrJnE8yJXj3OC_bt6sPX5XW1-vTxZnm5qlDpLlf92ChEMthPUzORanWnDXZad7IlND0tlFBmkEj9JIA0QIdD18uhFZIGJHXB3p682xh-7Chlu3EJaZ7BU9glK9si6Ba96AoqTyjGkFKkyW6j20A82EbYY7Z2bY8N2GMDVhhbGihPbx79u2FD49-XP5EX4P0JKCnT3lG0CR15LClFwmzH4P7n_w3hc5qo</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Fernandes, Marta Priscila Bento</creator><creator>Armengol de la Hoz, Miguel</creator><creator>Rangasamy, Valluvan</creator><creator>Subramaniam, Balachundhar</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7203-2832</orcidid><orcidid>https://orcid.org/0000-0001-7705-5796</orcidid></search><sort><creationdate>202103</creationdate><title>Machine Learning Models with Preoperative Risk Factors and Intraoperative Hypotension Parameters Predict Mortality After Cardiac Surgery</title><author>Fernandes, Marta Priscila Bento ; Armengol de la Hoz, Miguel ; Rangasamy, Valluvan ; Subramaniam, Balachundhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8d13cce7c8ff1fe345657c655624ec78e93037b2ce8f0ae5aa6cb682b402ebce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cardiac surgery</topic><topic>intraoperative adverse factors</topic><topic>intraoperative hypotension</topic><topic>Machine learning</topic><topic>mortality prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Marta Priscila Bento</creatorcontrib><creatorcontrib>Armengol de la Hoz, Miguel</creatorcontrib><creatorcontrib>Rangasamy, Valluvan</creatorcontrib><creatorcontrib>Subramaniam, Balachundhar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiothoracic and vascular anesthesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Marta Priscila Bento</au><au>Armengol de la Hoz, Miguel</au><au>Rangasamy, Valluvan</au><au>Subramaniam, Balachundhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Models with Preoperative Risk Factors and Intraoperative Hypotension Parameters Predict Mortality After Cardiac Surgery</atitle><jtitle>Journal of cardiothoracic and vascular anesthesia</jtitle><addtitle>J Cardiothorac Vasc Anesth</addtitle><date>2021-03</date><risdate>2021</risdate><volume>35</volume><issue>3</issue><spage>857</spage><epage>865</epage><pages>857-865</pages><issn>1053-0770</issn><eissn>1532-8422</eissn><abstract>Objectives: Machine learning models used to predict postoperative mortality rarely include intraoperative factors. Several intraoperative factors like hypotension (IOH), vasopressor-inotropes, and cardiopulmonary bypass (CPB) time are significantly associated with postoperative outcomes. The authors explored the ability of machine learning models incorporating intraoperative risk factors to predict mortality after cardiac surgery. Design: Retrospective study. Setting: Tertiary hospital. Participants: A total of 5,015 adults who underwent cardiac surgery from 2008 to 2016. Intervention: None. Measurements and Main Results: The intraoperative phase was divided into the following: (1) CPB, (2) outside CPB, and (3) total surgery for quantifying IOH only. Phase-specific IOH parameters (area under the curve for mean arterial pressure &lt;65 mmHg), vasopressor-inotropes (norepinephrine equivalents), duration, and cross-clamp time, along with preoperative risk factors ,were incorporated into the models. The primary outcome was mortality. The following 5 models were applied to 3 intraoperative phases separately: (1) logistic regression, (2) random forests, (3) neural networks, (4) support vector machines, and (5) extreme gradient boosting (XGB). Mortality was predicted using area under the receiver operating characteristic curve. Of 5,015 patients included, 112 (2.2%) died. XGB model from the outside-CPB phase predicted mortality better with area under the receiver operating characteristic curve, 95% confidence interval (CI): 0.88(0.83-0.94); positive predictive value, 0.10(0.06-0.15); specificity 0.85 (0.83-0.87) and sensitivity 0.75 (0.57-0.90). Conclusion: XGB machine learning model from IOH outside the CPB phase seemed to offer a better discrimination, sensitivity, specificity, and positive predictive value compared with other models. Machine learning models incorporating intraoperative adverse factors might offer better predictive ability for risk stratification and triaging of patients after cardiac surgery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32747203</pmid><doi>10.1053/j.jvca.2020.07.029</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7203-2832</orcidid><orcidid>https://orcid.org/0000-0001-7705-5796</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-0770
ispartof Journal of cardiothoracic and vascular anesthesia, 2021-03, Vol.35 (3), p.857-865
issn 1053-0770
1532-8422
language eng
recordid cdi_proquest_miscellaneous_2430369806
source Elsevier ScienceDirect Journals
subjects cardiac surgery
intraoperative adverse factors
intraoperative hypotension
Machine learning
mortality prediction
title Machine Learning Models with Preoperative Risk Factors and Intraoperative Hypotension Parameters Predict Mortality After Cardiac Surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Models%20with%20Preoperative%20Risk%20Factors%20and%20Intraoperative%20Hypotension%20Parameters%20Predict%20Mortality%20After%20Cardiac%20Surgery&rft.jtitle=Journal%20of%20cardiothoracic%20and%20vascular%20anesthesia&rft.au=Fernandes,%20Marta%20Priscila%20Bento&rft.date=2021-03&rft.volume=35&rft.issue=3&rft.spage=857&rft.epage=865&rft.pages=857-865&rft.issn=1053-0770&rft.eissn=1532-8422&rft_id=info:doi/10.1053/j.jvca.2020.07.029&rft_dat=%3Cproquest_cross%3E2430369806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430369806&rft_id=info:pmid/32747203&rft_els_id=S1053077020306595&rfr_iscdi=true