Semi-automated transcription and scoring of autobiographical memory narratives

Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Intervi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior Research Methods 2021-04, Vol.53 (2), p.507-517
Hauptverfasser: Wardell, Victoria, Esposito, Christian L., Madan, Christopher R., Palombo, Daniela J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue 2
container_start_page 507
container_title Behavior Research Methods
container_volume 53
creator Wardell, Victoria
Esposito, Christian L.
Madan, Christopher R.
Palombo, Daniela J.
description Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Interview (AI; Levine, Svoboda, Hay, Winocur, & Moscovitch, Psychology and Aging, 17 , 677–89, 2002 ), but this method can be adapted for other narrative protocols. Specifically, here we lay out a procedure that guides researchers through the four main phases of the autobiographical narrative pipeline: (1) data collection, (2) transcribing, (3) scoring, and (4) analysis. First, we provide recommendations for incorporating transcription software to augment human transcribing. We then introduce an electronic scoring procedure for tagging narratives for scoring that incorporates the traditional AI scoring method with basic keyboard shortcuts in Microsoft Word. Finally, we provide a Python script that can be used to automate counting of scored transcripts. This method accelerates the time it takes to conduct a narrative study and reduces the opportunity for error in narrative quantification. Available open access on GitHub ( https://github.com/cMadan/scoreAI ), our pipeline makes narrative methods more accessible for future research.
doi_str_mv 10.3758/s13428-020-01437-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430368750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713917785</galeid><sourcerecordid>A713917785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-87493c5bf409993949027f4a1723027da3e748d908006eb48397dbcf0c4259e63</originalsourceid><addsrcrecordid>eNp9kU1PHiEUhUlTUz_aP9CFmaQbN6PAhQGWxrRqYupCuyYMw7zFzMAIMxr_fXkd2xoXhgU3N8-5OTkHoa8EH4Pg8iQTYFTWmOIaEwaifvyA9gjnrAZO5cdX8y7az_kOY5CUsE9oF6hgkoLaQz9v3Ohrs8xxNLPrqjmZkG3y0-xjqEzoqmxj8mFTxb7aYq2Pm2Sm396aoRrdGNNTFUxKZvYPLn9GO70Zsvvy8h-gXz--355d1FfX55dnp1e1ZbKZaymYAsvbnmGlFCimMBU9M0RQKFNnwBWDncIS48a1TIISXWt7bBnlyjVwgI7Wu1OK94vLsx59tm4YTHBxyZoywNBIwXFBv71B7-KSQnGnKSeNVLThslDHK7Uxg9M-9LEkYcvrSj42Btf7sj8VBBQRQvIioKvApphzcr2ekh9NetIE6209eq1Hl3r0cz36sYgOX7ws7ei6f5K_fRQAViBP29Bd-m_2nbN_AIAjmjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516892658</pqid></control><display><type>article</type><title>Semi-automated transcription and scoring of autobiographical memory narratives</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wardell, Victoria ; Esposito, Christian L. ; Madan, Christopher R. ; Palombo, Daniela J.</creator><creatorcontrib>Wardell, Victoria ; Esposito, Christian L. ; Madan, Christopher R. ; Palombo, Daniela J.</creatorcontrib><description>Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Interview (AI; Levine, Svoboda, Hay, Winocur, &amp; Moscovitch, Psychology and Aging, 17 , 677–89, 2002 ), but this method can be adapted for other narrative protocols. Specifically, here we lay out a procedure that guides researchers through the four main phases of the autobiographical narrative pipeline: (1) data collection, (2) transcribing, (3) scoring, and (4) analysis. First, we provide recommendations for incorporating transcription software to augment human transcribing. We then introduce an electronic scoring procedure for tagging narratives for scoring that incorporates the traditional AI scoring method with basic keyboard shortcuts in Microsoft Word. Finally, we provide a Python script that can be used to automate counting of scored transcripts. This method accelerates the time it takes to conduct a narrative study and reduces the opportunity for error in narrative quantification. Available open access on GitHub ( https://github.com/cMadan/scoreAI ), our pipeline makes narrative methods more accessible for future research.</description><identifier>ISSN: 1554-3528</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-020-01437-w</identifier><identifier>PMID: 32748239</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging ; Analysis ; Automation ; Behavioral Science and Psychology ; Cognitive Psychology ; Computer software industry ; Genetic transcription ; Mechanization ; Narratives ; Psychology ; Technology application ; Transcription</subject><ispartof>Behavior Research Methods, 2021-04, Vol.53 (2), p.507-517</ispartof><rights>The Psychonomic Society, Inc. 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Psychonomic Society, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-87493c5bf409993949027f4a1723027da3e748d908006eb48397dbcf0c4259e63</citedby><cites>FETCH-LOGICAL-c486t-87493c5bf409993949027f4a1723027da3e748d908006eb48397dbcf0c4259e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-020-01437-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-020-01437-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32748239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wardell, Victoria</creatorcontrib><creatorcontrib>Esposito, Christian L.</creatorcontrib><creatorcontrib>Madan, Christopher R.</creatorcontrib><creatorcontrib>Palombo, Daniela J.</creatorcontrib><title>Semi-automated transcription and scoring of autobiographical memory narratives</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Interview (AI; Levine, Svoboda, Hay, Winocur, &amp; Moscovitch, Psychology and Aging, 17 , 677–89, 2002 ), but this method can be adapted for other narrative protocols. Specifically, here we lay out a procedure that guides researchers through the four main phases of the autobiographical narrative pipeline: (1) data collection, (2) transcribing, (3) scoring, and (4) analysis. First, we provide recommendations for incorporating transcription software to augment human transcribing. We then introduce an electronic scoring procedure for tagging narratives for scoring that incorporates the traditional AI scoring method with basic keyboard shortcuts in Microsoft Word. Finally, we provide a Python script that can be used to automate counting of scored transcripts. This method accelerates the time it takes to conduct a narrative study and reduces the opportunity for error in narrative quantification. Available open access on GitHub ( https://github.com/cMadan/scoreAI ), our pipeline makes narrative methods more accessible for future research.</description><subject>Aging</subject><subject>Analysis</subject><subject>Automation</subject><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Computer software industry</subject><subject>Genetic transcription</subject><subject>Mechanization</subject><subject>Narratives</subject><subject>Psychology</subject><subject>Technology application</subject><subject>Transcription</subject><issn>1554-3528</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PHiEUhUlTUz_aP9CFmaQbN6PAhQGWxrRqYupCuyYMw7zFzMAIMxr_fXkd2xoXhgU3N8-5OTkHoa8EH4Pg8iQTYFTWmOIaEwaifvyA9gjnrAZO5cdX8y7az_kOY5CUsE9oF6hgkoLaQz9v3Ohrs8xxNLPrqjmZkG3y0-xjqEzoqmxj8mFTxb7aYq2Pm2Sm396aoRrdGNNTFUxKZvYPLn9GO70Zsvvy8h-gXz--355d1FfX55dnp1e1ZbKZaymYAsvbnmGlFCimMBU9M0RQKFNnwBWDncIS48a1TIISXWt7bBnlyjVwgI7Wu1OK94vLsx59tm4YTHBxyZoywNBIwXFBv71B7-KSQnGnKSeNVLThslDHK7Uxg9M-9LEkYcvrSj42Btf7sj8VBBQRQvIioKvApphzcr2ekh9NetIE6209eq1Hl3r0cz36sYgOX7ws7ei6f5K_fRQAViBP29Bd-m_2nbN_AIAjmjE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wardell, Victoria</creator><creator>Esposito, Christian L.</creator><creator>Madan, Christopher R.</creator><creator>Palombo, Daniela J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20210401</creationdate><title>Semi-automated transcription and scoring of autobiographical memory narratives</title><author>Wardell, Victoria ; Esposito, Christian L. ; Madan, Christopher R. ; Palombo, Daniela J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-87493c5bf409993949027f4a1723027da3e748d908006eb48397dbcf0c4259e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging</topic><topic>Analysis</topic><topic>Automation</topic><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Computer software industry</topic><topic>Genetic transcription</topic><topic>Mechanization</topic><topic>Narratives</topic><topic>Psychology</topic><topic>Technology application</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wardell, Victoria</creatorcontrib><creatorcontrib>Esposito, Christian L.</creatorcontrib><creatorcontrib>Madan, Christopher R.</creatorcontrib><creatorcontrib>Palombo, Daniela J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wardell, Victoria</au><au>Esposito, Christian L.</au><au>Madan, Christopher R.</au><au>Palombo, Daniela J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-automated transcription and scoring of autobiographical memory narratives</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>53</volume><issue>2</issue><spage>507</spage><epage>517</epage><pages>507-517</pages><issn>1554-3528</issn><eissn>1554-3528</eissn><abstract>Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Interview (AI; Levine, Svoboda, Hay, Winocur, &amp; Moscovitch, Psychology and Aging, 17 , 677–89, 2002 ), but this method can be adapted for other narrative protocols. Specifically, here we lay out a procedure that guides researchers through the four main phases of the autobiographical narrative pipeline: (1) data collection, (2) transcribing, (3) scoring, and (4) analysis. First, we provide recommendations for incorporating transcription software to augment human transcribing. We then introduce an electronic scoring procedure for tagging narratives for scoring that incorporates the traditional AI scoring method with basic keyboard shortcuts in Microsoft Word. Finally, we provide a Python script that can be used to automate counting of scored transcripts. This method accelerates the time it takes to conduct a narrative study and reduces the opportunity for error in narrative quantification. Available open access on GitHub ( https://github.com/cMadan/scoreAI ), our pipeline makes narrative methods more accessible for future research.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32748239</pmid><doi>10.3758/s13428-020-01437-w</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-3528
ispartof Behavior Research Methods, 2021-04, Vol.53 (2), p.507-517
issn 1554-3528
1554-3528
language eng
recordid cdi_proquest_miscellaneous_2430368750
source SpringerLink Journals - AutoHoldings
subjects Aging
Analysis
Automation
Behavioral Science and Psychology
Cognitive Psychology
Computer software industry
Genetic transcription
Mechanization
Narratives
Psychology
Technology application
Transcription
title Semi-automated transcription and scoring of autobiographical memory narratives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-automated%20transcription%20and%20scoring%20of%20autobiographical%20memory%20narratives&rft.jtitle=Behavior%20Research%20Methods&rft.au=Wardell,%20Victoria&rft.date=2021-04-01&rft.volume=53&rft.issue=2&rft.spage=507&rft.epage=517&rft.pages=507-517&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-020-01437-w&rft_dat=%3Cgale_proqu%3EA713917785%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516892658&rft_id=info:pmid/32748239&rft_galeid=A713917785&rfr_iscdi=true