Semi-automated transcription and scoring of autobiographical memory narratives
Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Intervi...
Gespeichert in:
Veröffentlicht in: | Behavior Research Methods 2021-04, Vol.53 (2), p.507-517 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | 2 |
container_start_page | 507 |
container_title | Behavior Research Methods |
container_volume | 53 |
creator | Wardell, Victoria Esposito, Christian L. Madan, Christopher R. Palombo, Daniela J. |
description | Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Interview (AI; Levine, Svoboda, Hay, Winocur, & Moscovitch,
Psychology and Aging, 17
, 677–89,
2002
), but this method can be adapted for other narrative protocols. Specifically, here we lay out a procedure that guides researchers through the four main phases of the autobiographical narrative pipeline: (1) data collection, (2) transcribing, (3) scoring, and (4) analysis. First, we provide recommendations for incorporating transcription software to augment human transcribing. We then introduce an electronic scoring procedure for tagging narratives for scoring that incorporates the traditional AI scoring method with basic keyboard shortcuts in Microsoft Word. Finally, we provide a Python script that can be used to automate counting of scored transcripts. This method accelerates the time it takes to conduct a narrative study and reduces the opportunity for error in narrative quantification. Available open access on GitHub (
https://github.com/cMadan/scoreAI
), our pipeline makes narrative methods more accessible for future research. |
doi_str_mv | 10.3758/s13428-020-01437-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430368750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713917785</galeid><sourcerecordid>A713917785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-87493c5bf409993949027f4a1723027da3e748d908006eb48397dbcf0c4259e63</originalsourceid><addsrcrecordid>eNp9kU1PHiEUhUlTUz_aP9CFmaQbN6PAhQGWxrRqYupCuyYMw7zFzMAIMxr_fXkd2xoXhgU3N8-5OTkHoa8EH4Pg8iQTYFTWmOIaEwaifvyA9gjnrAZO5cdX8y7az_kOY5CUsE9oF6hgkoLaQz9v3Ohrs8xxNLPrqjmZkG3y0-xjqEzoqmxj8mFTxb7aYq2Pm2Sm396aoRrdGNNTFUxKZvYPLn9GO70Zsvvy8h-gXz--355d1FfX55dnp1e1ZbKZaymYAsvbnmGlFCimMBU9M0RQKFNnwBWDncIS48a1TIISXWt7bBnlyjVwgI7Wu1OK94vLsx59tm4YTHBxyZoywNBIwXFBv71B7-KSQnGnKSeNVLThslDHK7Uxg9M-9LEkYcvrSj42Btf7sj8VBBQRQvIioKvApphzcr2ekh9NetIE6209eq1Hl3r0cz36sYgOX7ws7ei6f5K_fRQAViBP29Bd-m_2nbN_AIAjmjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516892658</pqid></control><display><type>article</type><title>Semi-automated transcription and scoring of autobiographical memory narratives</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wardell, Victoria ; Esposito, Christian L. ; Madan, Christopher R. ; Palombo, Daniela J.</creator><creatorcontrib>Wardell, Victoria ; Esposito, Christian L. ; Madan, Christopher R. ; Palombo, Daniela J.</creatorcontrib><description>Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Interview (AI; Levine, Svoboda, Hay, Winocur, & Moscovitch,
Psychology and Aging, 17
, 677–89,
2002
), but this method can be adapted for other narrative protocols. Specifically, here we lay out a procedure that guides researchers through the four main phases of the autobiographical narrative pipeline: (1) data collection, (2) transcribing, (3) scoring, and (4) analysis. First, we provide recommendations for incorporating transcription software to augment human transcribing. We then introduce an electronic scoring procedure for tagging narratives for scoring that incorporates the traditional AI scoring method with basic keyboard shortcuts in Microsoft Word. Finally, we provide a Python script that can be used to automate counting of scored transcripts. This method accelerates the time it takes to conduct a narrative study and reduces the opportunity for error in narrative quantification. Available open access on GitHub (
https://github.com/cMadan/scoreAI
), our pipeline makes narrative methods more accessible for future research.</description><identifier>ISSN: 1554-3528</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-020-01437-w</identifier><identifier>PMID: 32748239</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging ; Analysis ; Automation ; Behavioral Science and Psychology ; Cognitive Psychology ; Computer software industry ; Genetic transcription ; Mechanization ; Narratives ; Psychology ; Technology application ; Transcription</subject><ispartof>Behavior Research Methods, 2021-04, Vol.53 (2), p.507-517</ispartof><rights>The Psychonomic Society, Inc. 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Psychonomic Society, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-87493c5bf409993949027f4a1723027da3e748d908006eb48397dbcf0c4259e63</citedby><cites>FETCH-LOGICAL-c486t-87493c5bf409993949027f4a1723027da3e748d908006eb48397dbcf0c4259e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-020-01437-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-020-01437-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32748239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wardell, Victoria</creatorcontrib><creatorcontrib>Esposito, Christian L.</creatorcontrib><creatorcontrib>Madan, Christopher R.</creatorcontrib><creatorcontrib>Palombo, Daniela J.</creatorcontrib><title>Semi-automated transcription and scoring of autobiographical memory narratives</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Interview (AI; Levine, Svoboda, Hay, Winocur, & Moscovitch,
Psychology and Aging, 17
, 677–89,
2002
), but this method can be adapted for other narrative protocols. Specifically, here we lay out a procedure that guides researchers through the four main phases of the autobiographical narrative pipeline: (1) data collection, (2) transcribing, (3) scoring, and (4) analysis. First, we provide recommendations for incorporating transcription software to augment human transcribing. We then introduce an electronic scoring procedure for tagging narratives for scoring that incorporates the traditional AI scoring method with basic keyboard shortcuts in Microsoft Word. Finally, we provide a Python script that can be used to automate counting of scored transcripts. This method accelerates the time it takes to conduct a narrative study and reduces the opportunity for error in narrative quantification. Available open access on GitHub (
https://github.com/cMadan/scoreAI
), our pipeline makes narrative methods more accessible for future research.</description><subject>Aging</subject><subject>Analysis</subject><subject>Automation</subject><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Computer software industry</subject><subject>Genetic transcription</subject><subject>Mechanization</subject><subject>Narratives</subject><subject>Psychology</subject><subject>Technology application</subject><subject>Transcription</subject><issn>1554-3528</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PHiEUhUlTUz_aP9CFmaQbN6PAhQGWxrRqYupCuyYMw7zFzMAIMxr_fXkd2xoXhgU3N8-5OTkHoa8EH4Pg8iQTYFTWmOIaEwaifvyA9gjnrAZO5cdX8y7az_kOY5CUsE9oF6hgkoLaQz9v3Ohrs8xxNLPrqjmZkG3y0-xjqEzoqmxj8mFTxb7aYq2Pm2Sm396aoRrdGNNTFUxKZvYPLn9GO70Zsvvy8h-gXz--355d1FfX55dnp1e1ZbKZaymYAsvbnmGlFCimMBU9M0RQKFNnwBWDncIS48a1TIISXWt7bBnlyjVwgI7Wu1OK94vLsx59tm4YTHBxyZoywNBIwXFBv71B7-KSQnGnKSeNVLThslDHK7Uxg9M-9LEkYcvrSj42Btf7sj8VBBQRQvIioKvApphzcr2ekh9NetIE6209eq1Hl3r0cz36sYgOX7ws7ei6f5K_fRQAViBP29Bd-m_2nbN_AIAjmjE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wardell, Victoria</creator><creator>Esposito, Christian L.</creator><creator>Madan, Christopher R.</creator><creator>Palombo, Daniela J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20210401</creationdate><title>Semi-automated transcription and scoring of autobiographical memory narratives</title><author>Wardell, Victoria ; Esposito, Christian L. ; Madan, Christopher R. ; Palombo, Daniela J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-87493c5bf409993949027f4a1723027da3e748d908006eb48397dbcf0c4259e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging</topic><topic>Analysis</topic><topic>Automation</topic><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Computer software industry</topic><topic>Genetic transcription</topic><topic>Mechanization</topic><topic>Narratives</topic><topic>Psychology</topic><topic>Technology application</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wardell, Victoria</creatorcontrib><creatorcontrib>Esposito, Christian L.</creatorcontrib><creatorcontrib>Madan, Christopher R.</creatorcontrib><creatorcontrib>Palombo, Daniela J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wardell, Victoria</au><au>Esposito, Christian L.</au><au>Madan, Christopher R.</au><au>Palombo, Daniela J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-automated transcription and scoring of autobiographical memory narratives</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>53</volume><issue>2</issue><spage>507</spage><epage>517</epage><pages>507-517</pages><issn>1554-3528</issn><eissn>1554-3528</eissn><abstract>Autobiographical memory studies conducted with narrative methods are onerous, requiring significant resources in time and labor. We have created a semi-automated process that allows autobiographical transcribing and scoring methods to be streamlined. Our paper focuses on the Autobiographical Interview (AI; Levine, Svoboda, Hay, Winocur, & Moscovitch,
Psychology and Aging, 17
, 677–89,
2002
), but this method can be adapted for other narrative protocols. Specifically, here we lay out a procedure that guides researchers through the four main phases of the autobiographical narrative pipeline: (1) data collection, (2) transcribing, (3) scoring, and (4) analysis. First, we provide recommendations for incorporating transcription software to augment human transcribing. We then introduce an electronic scoring procedure for tagging narratives for scoring that incorporates the traditional AI scoring method with basic keyboard shortcuts in Microsoft Word. Finally, we provide a Python script that can be used to automate counting of scored transcripts. This method accelerates the time it takes to conduct a narrative study and reduces the opportunity for error in narrative quantification. Available open access on GitHub (
https://github.com/cMadan/scoreAI
), our pipeline makes narrative methods more accessible for future research.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32748239</pmid><doi>10.3758/s13428-020-01437-w</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-3528 |
ispartof | Behavior Research Methods, 2021-04, Vol.53 (2), p.507-517 |
issn | 1554-3528 1554-3528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2430368750 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aging Analysis Automation Behavioral Science and Psychology Cognitive Psychology Computer software industry Genetic transcription Mechanization Narratives Psychology Technology application Transcription |
title | Semi-automated transcription and scoring of autobiographical memory narratives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-automated%20transcription%20and%20scoring%20of%20autobiographical%20memory%20narratives&rft.jtitle=Behavior%20Research%20Methods&rft.au=Wardell,%20Victoria&rft.date=2021-04-01&rft.volume=53&rft.issue=2&rft.spage=507&rft.epage=517&rft.pages=507-517&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-020-01437-w&rft_dat=%3Cgale_proqu%3EA713917785%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516892658&rft_id=info:pmid/32748239&rft_galeid=A713917785&rfr_iscdi=true |