Spin‐Orbit Torque Magnetization Switching in MoTe2/Permalloy Heterostructures

The ability to switch magnetic elements by spin‐orbit‐induced torques has recently attracted much attention for a path toward high‐performance, nonvolatile memories with low power consumption. Realizing efficient spin‐orbit‐based switching requires the harnessing of both new materials and novel phys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-09, Vol.32 (37), p.e2002799-n/a
Hauptverfasser: Liang, Shiheng, Shi, Shuyuan, Hsu, Chuang‐Han, Cai, Kaiming, Wang, Yi, He, Pan, Wu, Yang, Pereira, Vitor M., Yang, Hyunsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page e2002799
container_title Advanced materials (Weinheim)
container_volume 32
creator Liang, Shiheng
Shi, Shuyuan
Hsu, Chuang‐Han
Cai, Kaiming
Wang, Yi
He, Pan
Wu, Yang
Pereira, Vitor M.
Yang, Hyunsoo
description The ability to switch magnetic elements by spin‐orbit‐induced torques has recently attracted much attention for a path toward high‐performance, nonvolatile memories with low power consumption. Realizing efficient spin‐orbit‐based switching requires the harnessing of both new materials and novel physics to obtain high charge‐to‐spin conversion efficiencies, thus making the choice of spin source crucial. Here, the observation of spin‐orbit torque switching in bilayers consisting of a semimetallic film of 1T′‐MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best‐performing heavy metals. The thickness‐dependence can be understood if the interfacial spin‐orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell‐shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low‐power semimetal‐material‐based spin devices. Realizing efficient spin‐orbit‐based switching requires the harnessing of both new materials and physics to obtain high charge‐to‐spin conversion efficiencies. The observation of spin‐orbit torque switching in bilayers consisting of a semimetallic film of 1T′‐MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature with currents one order of magnitude smaller than those using heavy metals.
doi_str_mv 10.1002/adma.202002799
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430095109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430095109</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3329-f4ba64ebb00da3b209c98ca5270d8137450dde808bfc8deeaa6e2db161bacb63</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMoWKtb1wNu3Ex7cplLlqVeKrRU6OxDMpPWlOmkJhlKXfkIPqNP4tRKF67OOfBx-P8PoVsMAwxAhrLayAEB0u0Z52eohxOCYwY8OUc94DSJecryS3Tl_RoAeAppD80XW9N8f37NnTIhKqx7b3U0k6tGB_Mhg7FNtNiZUL6ZZhWZJprZQpPhq3YbWdd2H0100M764NoytE77a3SxlLXXN3-zj4qnx2I8iafz55fxaBqvKSU8XjIlU6aVAqgkVQR4yfNSJiSDKsc0YwlUlc4hV8syr7SWMtWkUjjFSpYqpX10f3y7dbZL7IPYGF_qupaNtq0XhNGuYYK72n109w9d29Y1XbiOYiTJM_ZL8SO1M7Xei60zG-n2AoM4uBUHt-LkVoweZqPTRX8Ak9dxvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442587409</pqid></control><display><type>article</type><title>Spin‐Orbit Torque Magnetization Switching in MoTe2/Permalloy Heterostructures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liang, Shiheng ; Shi, Shuyuan ; Hsu, Chuang‐Han ; Cai, Kaiming ; Wang, Yi ; He, Pan ; Wu, Yang ; Pereira, Vitor M. ; Yang, Hyunsoo</creator><creatorcontrib>Liang, Shiheng ; Shi, Shuyuan ; Hsu, Chuang‐Han ; Cai, Kaiming ; Wang, Yi ; He, Pan ; Wu, Yang ; Pereira, Vitor M. ; Yang, Hyunsoo</creatorcontrib><description>The ability to switch magnetic elements by spin‐orbit‐induced torques has recently attracted much attention for a path toward high‐performance, nonvolatile memories with low power consumption. Realizing efficient spin‐orbit‐based switching requires the harnessing of both new materials and novel physics to obtain high charge‐to‐spin conversion efficiencies, thus making the choice of spin source crucial. Here, the observation of spin‐orbit torque switching in bilayers consisting of a semimetallic film of 1T′‐MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best‐performing heavy metals. The thickness‐dependence can be understood if the interfacial spin‐orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell‐shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low‐power semimetal‐material‐based spin devices. Realizing efficient spin‐orbit‐based switching requires the harnessing of both new materials and physics to obtain high charge‐to‐spin conversion efficiencies. The observation of spin‐orbit torque switching in bilayers consisting of a semimetallic film of 1T′‐MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature with currents one order of magnitude smaller than those using heavy metals.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002799</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge efficiency ; Ferrous alloys ; Hall effect ; Heavy metals ; Heterostructures ; Magnetic alloys ; Magnetic switching ; Magnetism ; magnetization switching ; Molybdenum compounds ; Power consumption ; Power management ; Room temperature ; semimetal MoTe 2 ; spintronics ; spin‐orbit torque ; Tellurides ; Torque</subject><ispartof>Advanced materials (Weinheim), 2020-09, Vol.32 (37), p.e2002799-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0907-2898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202002799$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202002799$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liang, Shiheng</creatorcontrib><creatorcontrib>Shi, Shuyuan</creatorcontrib><creatorcontrib>Hsu, Chuang‐Han</creatorcontrib><creatorcontrib>Cai, Kaiming</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>He, Pan</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Pereira, Vitor M.</creatorcontrib><creatorcontrib>Yang, Hyunsoo</creatorcontrib><title>Spin‐Orbit Torque Magnetization Switching in MoTe2/Permalloy Heterostructures</title><title>Advanced materials (Weinheim)</title><description>The ability to switch magnetic elements by spin‐orbit‐induced torques has recently attracted much attention for a path toward high‐performance, nonvolatile memories with low power consumption. Realizing efficient spin‐orbit‐based switching requires the harnessing of both new materials and novel physics to obtain high charge‐to‐spin conversion efficiencies, thus making the choice of spin source crucial. Here, the observation of spin‐orbit torque switching in bilayers consisting of a semimetallic film of 1T′‐MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best‐performing heavy metals. The thickness‐dependence can be understood if the interfacial spin‐orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell‐shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low‐power semimetal‐material‐based spin devices. Realizing efficient spin‐orbit‐based switching requires the harnessing of both new materials and physics to obtain high charge‐to‐spin conversion efficiencies. The observation of spin‐orbit torque switching in bilayers consisting of a semimetallic film of 1T′‐MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature with currents one order of magnitude smaller than those using heavy metals.</description><subject>Charge efficiency</subject><subject>Ferrous alloys</subject><subject>Hall effect</subject><subject>Heavy metals</subject><subject>Heterostructures</subject><subject>Magnetic alloys</subject><subject>Magnetic switching</subject><subject>Magnetism</subject><subject>magnetization switching</subject><subject>Molybdenum compounds</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Room temperature</subject><subject>semimetal MoTe 2</subject><subject>spintronics</subject><subject>spin‐orbit torque</subject><subject>Tellurides</subject><subject>Torque</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKAzEUhoMoWKtb1wNu3Ex7cplLlqVeKrRU6OxDMpPWlOmkJhlKXfkIPqNP4tRKF67OOfBx-P8PoVsMAwxAhrLayAEB0u0Z52eohxOCYwY8OUc94DSJecryS3Tl_RoAeAppD80XW9N8f37NnTIhKqx7b3U0k6tGB_Mhg7FNtNiZUL6ZZhWZJprZQpPhq3YbWdd2H0100M764NoytE77a3SxlLXXN3-zj4qnx2I8iafz55fxaBqvKSU8XjIlU6aVAqgkVQR4yfNSJiSDKsc0YwlUlc4hV8syr7SWMtWkUjjFSpYqpX10f3y7dbZL7IPYGF_qupaNtq0XhNGuYYK72n109w9d29Y1XbiOYiTJM_ZL8SO1M7Xei60zG-n2AoM4uBUHt-LkVoweZqPTRX8Ak9dxvg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liang, Shiheng</creator><creator>Shi, Shuyuan</creator><creator>Hsu, Chuang‐Han</creator><creator>Cai, Kaiming</creator><creator>Wang, Yi</creator><creator>He, Pan</creator><creator>Wu, Yang</creator><creator>Pereira, Vitor M.</creator><creator>Yang, Hyunsoo</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0907-2898</orcidid></search><sort><creationdate>20200901</creationdate><title>Spin‐Orbit Torque Magnetization Switching in MoTe2/Permalloy Heterostructures</title><author>Liang, Shiheng ; Shi, Shuyuan ; Hsu, Chuang‐Han ; Cai, Kaiming ; Wang, Yi ; He, Pan ; Wu, Yang ; Pereira, Vitor M. ; Yang, Hyunsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3329-f4ba64ebb00da3b209c98ca5270d8137450dde808bfc8deeaa6e2db161bacb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge efficiency</topic><topic>Ferrous alloys</topic><topic>Hall effect</topic><topic>Heavy metals</topic><topic>Heterostructures</topic><topic>Magnetic alloys</topic><topic>Magnetic switching</topic><topic>Magnetism</topic><topic>magnetization switching</topic><topic>Molybdenum compounds</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Room temperature</topic><topic>semimetal MoTe 2</topic><topic>spintronics</topic><topic>spin‐orbit torque</topic><topic>Tellurides</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shiheng</creatorcontrib><creatorcontrib>Shi, Shuyuan</creatorcontrib><creatorcontrib>Hsu, Chuang‐Han</creatorcontrib><creatorcontrib>Cai, Kaiming</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>He, Pan</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Pereira, Vitor M.</creatorcontrib><creatorcontrib>Yang, Hyunsoo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Shiheng</au><au>Shi, Shuyuan</au><au>Hsu, Chuang‐Han</au><au>Cai, Kaiming</au><au>Wang, Yi</au><au>He, Pan</au><au>Wu, Yang</au><au>Pereira, Vitor M.</au><au>Yang, Hyunsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin‐Orbit Torque Magnetization Switching in MoTe2/Permalloy Heterostructures</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>32</volume><issue>37</issue><spage>e2002799</spage><epage>n/a</epage><pages>e2002799-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The ability to switch magnetic elements by spin‐orbit‐induced torques has recently attracted much attention for a path toward high‐performance, nonvolatile memories with low power consumption. Realizing efficient spin‐orbit‐based switching requires the harnessing of both new materials and novel physics to obtain high charge‐to‐spin conversion efficiencies, thus making the choice of spin source crucial. Here, the observation of spin‐orbit torque switching in bilayers consisting of a semimetallic film of 1T′‐MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best‐performing heavy metals. The thickness‐dependence can be understood if the interfacial spin‐orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell‐shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low‐power semimetal‐material‐based spin devices. Realizing efficient spin‐orbit‐based switching requires the harnessing of both new materials and physics to obtain high charge‐to‐spin conversion efficiencies. The observation of spin‐orbit torque switching in bilayers consisting of a semimetallic film of 1T′‐MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature with currents one order of magnitude smaller than those using heavy metals.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202002799</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0907-2898</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-09, Vol.32 (37), p.e2002799-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2430095109
source Wiley Online Library Journals Frontfile Complete
subjects Charge efficiency
Ferrous alloys
Hall effect
Heavy metals
Heterostructures
Magnetic alloys
Magnetic switching
Magnetism
magnetization switching
Molybdenum compounds
Power consumption
Power management
Room temperature
semimetal MoTe 2
spintronics
spin‐orbit torque
Tellurides
Torque
title Spin‐Orbit Torque Magnetization Switching in MoTe2/Permalloy Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%E2%80%90Orbit%20Torque%20Magnetization%20Switching%20in%20MoTe2/Permalloy%20Heterostructures&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liang,%20Shiheng&rft.date=2020-09-01&rft.volume=32&rft.issue=37&rft.spage=e2002799&rft.epage=n/a&rft.pages=e2002799-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002799&rft_dat=%3Cproquest_wiley%3E2430095109%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442587409&rft_id=info:pmid/&rfr_iscdi=true