The first instability in spherical Taylor-Couette flow
In this paper continuation methods are applied to the axisymmetric Navier-Stokes equations in order to investigate how the stability of spherical Couette flow depends on the gap size σ. We find that the flow loses its stability due to symmetry-breaking bifurcations and exhibits a transition with hys...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 1986-05, Vol.166 (1), p.287-303 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 1 |
container_start_page | 287 |
container_title | Journal of fluid mechanics |
container_volume | 166 |
creator | Schrauf, Géza |
description | In this paper continuation methods are applied to the axisymmetric Navier-Stokes equations in order to investigate how the stability of spherical Couette flow depends on the gap size σ. We find that the flow loses its stability due to symmetry-breaking bifurcations and exhibits a transition with hysteresis into a flow with one pair of Taylor vortices if the gap size is sufficiently small, i.e. if σ [les ] σB. In wider gaps, i.e. for σB < σ [les ] σF, both flows, the spherical Couette flow and the flow with one pair of Taylor vortices, are stable. We predict that the latter exists in much wider gaps than previous experiments and calculations showed. Taylor vortices do not exist if σ > σF. The numbers σB and σF are computed by calculating the instability region of the spherical Couette flow and the region of existence of the flow with one pair of Taylor vortices. |
doi_str_mv | 10.1017/S0022112086000150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24300030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112086000150</cupid><sourcerecordid>24061983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-f0c1a6cc7151bee90409dd8e991961056708630afeeb592c32f25e39f5eb4f203</originalsourceid><addsrcrecordid>eNqNkEFLAzEQhYMoWKs_wFsP4m11kmyym6NUbYWCVOs5ZNOJTd12a7JF--9NaelFEE8z8L43vHmEXFK4oUCL21cAxihlUEoAoAKOSIfmUmWFzMUx6WzlbKufkrMY5wnhoIoOkZMZ9pwPse35ZWxN5WvfbtLei6sZBm9N3ZuYTd2ErN-ssW0TXTdf5-TEmTrixX52ydvjw6Q_zEbPg6f-3Sizgok2c2CpkdYWVNAKUUEOajotUSmqJAUhi5SXg3GIlVDMcuaYQK6cwCp3DHiXXO_urkLzucbY6oWPFuvaLLFZR81ynt7l_wFBUlXyBNIdaEMTY0CnV8EvTNhoCnpbpf5VZfJc7Y-bmApxwSytjwdjUSoGUCYs22E-tvh9kE340LLghdByMNbjIYyEfGH6PvF8H8UsquCn76jnzTosU6F_hPkBPzyPTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24061983</pqid></control><display><type>article</type><title>The first instability in spherical Taylor-Couette flow</title><source>Cambridge Journals</source><creator>Schrauf, Géza</creator><creatorcontrib>Schrauf, Géza</creatorcontrib><description>In this paper continuation methods are applied to the axisymmetric Navier-Stokes equations in order to investigate how the stability of spherical Couette flow depends on the gap size σ. We find that the flow loses its stability due to symmetry-breaking bifurcations and exhibits a transition with hysteresis into a flow with one pair of Taylor vortices if the gap size is sufficiently small, i.e. if σ [les ] σB. In wider gaps, i.e. for σB < σ [les ] σF, both flows, the spherical Couette flow and the flow with one pair of Taylor vortices, are stable. We predict that the latter exists in much wider gaps than previous experiments and calculations showed. Taylor vortices do not exist if σ > σF. The numbers σB and σF are computed by calculating the instability region of the spherical Couette flow and the region of existence of the flow with one pair of Taylor vortices.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112086000150</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Rotational flow and vorticity</subject><ispartof>Journal of fluid mechanics, 1986-05, Vol.166 (1), p.287-303</ispartof><rights>1986 Cambridge University Press</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-f0c1a6cc7151bee90409dd8e991961056708630afeeb592c32f25e39f5eb4f203</citedby><cites>FETCH-LOGICAL-c525t-f0c1a6cc7151bee90409dd8e991961056708630afeeb592c32f25e39f5eb4f203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112086000150/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7892008$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schrauf, Géza</creatorcontrib><title>The first instability in spherical Taylor-Couette flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In this paper continuation methods are applied to the axisymmetric Navier-Stokes equations in order to investigate how the stability of spherical Couette flow depends on the gap size σ. We find that the flow loses its stability due to symmetry-breaking bifurcations and exhibits a transition with hysteresis into a flow with one pair of Taylor vortices if the gap size is sufficiently small, i.e. if σ [les ] σB. In wider gaps, i.e. for σB < σ [les ] σF, both flows, the spherical Couette flow and the flow with one pair of Taylor vortices, are stable. We predict that the latter exists in much wider gaps than previous experiments and calculations showed. Taylor vortices do not exist if σ > σF. The numbers σB and σF are computed by calculating the instability region of the spherical Couette flow and the region of existence of the flow with one pair of Taylor vortices.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Rotational flow and vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLAzEQhYMoWKs_wFsP4m11kmyym6NUbYWCVOs5ZNOJTd12a7JF--9NaelFEE8z8L43vHmEXFK4oUCL21cAxihlUEoAoAKOSIfmUmWFzMUx6WzlbKufkrMY5wnhoIoOkZMZ9pwPse35ZWxN5WvfbtLei6sZBm9N3ZuYTd2ErN-ssW0TXTdf5-TEmTrixX52ydvjw6Q_zEbPg6f-3Sizgok2c2CpkdYWVNAKUUEOajotUSmqJAUhi5SXg3GIlVDMcuaYQK6cwCp3DHiXXO_urkLzucbY6oWPFuvaLLFZR81ynt7l_wFBUlXyBNIdaEMTY0CnV8EvTNhoCnpbpf5VZfJc7Y-bmApxwSytjwdjUSoGUCYs22E-tvh9kE340LLghdByMNbjIYyEfGH6PvF8H8UsquCn76jnzTosU6F_hPkBPzyPTQ</recordid><startdate>19860501</startdate><enddate>19860501</enddate><creator>Schrauf, Géza</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19860501</creationdate><title>The first instability in spherical Taylor-Couette flow</title><author>Schrauf, Géza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-f0c1a6cc7151bee90409dd8e991961056708630afeeb592c32f25e39f5eb4f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Rotational flow and vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schrauf, Géza</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schrauf, Géza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The first instability in spherical Taylor-Couette flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1986-05-01</date><risdate>1986</risdate><volume>166</volume><issue>1</issue><spage>287</spage><epage>303</epage><pages>287-303</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>In this paper continuation methods are applied to the axisymmetric Navier-Stokes equations in order to investigate how the stability of spherical Couette flow depends on the gap size σ. We find that the flow loses its stability due to symmetry-breaking bifurcations and exhibits a transition with hysteresis into a flow with one pair of Taylor vortices if the gap size is sufficiently small, i.e. if σ [les ] σB. In wider gaps, i.e. for σB < σ [les ] σF, both flows, the spherical Couette flow and the flow with one pair of Taylor vortices, are stable. We predict that the latter exists in much wider gaps than previous experiments and calculations showed. Taylor vortices do not exist if σ > σF. The numbers σB and σF are computed by calculating the instability region of the spherical Couette flow and the region of existence of the flow with one pair of Taylor vortices.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112086000150</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 1986-05, Vol.166 (1), p.287-303 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_24300030 |
source | Cambridge Journals |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Rotational flow and vorticity |
title | The first instability in spherical Taylor-Couette flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20first%20instability%20in%20spherical%20Taylor-Couette%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Schrauf,%20G%C3%A9za&rft.date=1986-05-01&rft.volume=166&rft.issue=1&rft.spage=287&rft.epage=303&rft.pages=287-303&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112086000150&rft_dat=%3Cproquest_cross%3E24061983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24061983&rft_id=info:pmid/&rft_cupid=10_1017_S0022112086000150&rfr_iscdi=true |