Numerical computations on one-dimensional inverse scattering problems

In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1984-07, Vol.55 (1), p.157-165
Hauptverfasser: Dunn, Mark H, Hariharan, S.I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 1
container_start_page 157
container_title Journal of computational physics
container_volume 55
creator Dunn, Mark H
Hariharan, S.I
description In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yields an additional initial condition. We approximate the index of refraction by a kth-order spline which can be written as a linear combination of B-splines. For N/2 distinct reflection coefficients, the resulting N/2 initial value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.
doi_str_mv 10.1016/0021-9991(84)90021-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24298947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999184900214</els_id><sourcerecordid>24298947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a1ac171ff716eca75b874dc0a1ec4b778a025a99b01b87cd4431f493265bb2463</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-gz30IKKHapKmbXIRZFn_wKIXPYc0nUqkTddMK_jtzW6XPQqBIXm_N5l5hCwYvWWUFXeUcpYqpdi1FDdqdxNHZMaooikvWXFMZgfklJwhflFKZS7kjKxexw6Cs6ZNbN9txsEMrveY9D4eSGvXgcf4EnXnfyAgJGjNMESP_0w2oa9a6PCcnDSmRbjY1zn5eFy9L5_T9dvTy_JhndpM8iE1zFhWsqaJM4E1ZV7JUtSWGgZWVGUpDeW5UaqiLCq2FiJjjVAZL_Kq4qLI5uRq6hs__h4BB905tNC2xkM_ouaCK6lEGUExgTb0iAEavQmuM-FXM6q3meltIHobiJZC7zLTItou9_1N3LJtgvHW4cGraCFLySO2mDBv0Gg_BNRMSUFprjIpo3w_yRCj-HEQNFoH3kLtAthB1737f4w_1qaIvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24298947</pqid></control><display><type>article</type><title>Numerical computations on one-dimensional inverse scattering problems</title><source>Elsevier ScienceDirect Journals</source><source>NASA Technical Reports Server</source><creator>Dunn, Mark H ; Hariharan, S.I</creator><creatorcontrib>Dunn, Mark H ; Hariharan, S.I</creatorcontrib><description>In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yields an additional initial condition. We approximate the index of refraction by a kth-order spline which can be written as a linear combination of B-splines. For N/2 distinct reflection coefficients, the resulting N/2 initial value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(84)90021-4</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Inc</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Numerical Analysis ; Optics ; Physics ; Wave optics ; Wave propagation, transmission and absorption</subject><ispartof>Journal of computational physics, 1984-07, Vol.55 (1), p.157-165</ispartof><rights>1984</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-a1ac171ff716eca75b874dc0a1ec4b778a025a99b01b87cd4431f493265bb2463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0021999184900214$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9068782$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunn, Mark H</creatorcontrib><creatorcontrib>Hariharan, S.I</creatorcontrib><title>Numerical computations on one-dimensional inverse scattering problems</title><title>Journal of computational physics</title><description>In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yields an additional initial condition. We approximate the index of refraction by a kth-order spline which can be written as a linear combination of B-splines. For N/2 distinct reflection coefficients, the resulting N/2 initial value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Numerical Analysis</subject><subject>Optics</subject><subject>Physics</subject><subject>Wave optics</subject><subject>Wave propagation, transmission and absorption</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kE9LxDAQxYMouK5-gz30IKKHapKmbXIRZFn_wKIXPYc0nUqkTddMK_jtzW6XPQqBIXm_N5l5hCwYvWWUFXeUcpYqpdi1FDdqdxNHZMaooikvWXFMZgfklJwhflFKZS7kjKxexw6Cs6ZNbN9txsEMrveY9D4eSGvXgcf4EnXnfyAgJGjNMESP_0w2oa9a6PCcnDSmRbjY1zn5eFy9L5_T9dvTy_JhndpM8iE1zFhWsqaJM4E1ZV7JUtSWGgZWVGUpDeW5UaqiLCq2FiJjjVAZL_Kq4qLI5uRq6hs__h4BB905tNC2xkM_ouaCK6lEGUExgTb0iAEavQmuM-FXM6q3meltIHobiJZC7zLTItou9_1N3LJtgvHW4cGraCFLySO2mDBv0Gg_BNRMSUFprjIpo3w_yRCj-HEQNFoH3kLtAthB1737f4w_1qaIvw</recordid><startdate>19840701</startdate><enddate>19840701</enddate><creator>Dunn, Mark H</creator><creator>Hariharan, S.I</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19840701</creationdate><title>Numerical computations on one-dimensional inverse scattering problems</title><author>Dunn, Mark H ; Hariharan, S.I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a1ac171ff716eca75b874dc0a1ec4b778a025a99b01b87cd4431f493265bb2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Numerical Analysis</topic><topic>Optics</topic><topic>Physics</topic><topic>Wave optics</topic><topic>Wave propagation, transmission and absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunn, Mark H</creatorcontrib><creatorcontrib>Hariharan, S.I</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunn, Mark H</au><au>Hariharan, S.I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical computations on one-dimensional inverse scattering problems</atitle><jtitle>Journal of computational physics</jtitle><date>1984-07-01</date><risdate>1984</risdate><volume>55</volume><issue>1</issue><spage>157</spage><epage>165</epage><pages>157-165</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yields an additional initial condition. We approximate the index of refraction by a kth-order spline which can be written as a linear combination of B-splines. For N/2 distinct reflection coefficients, the resulting N/2 initial value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(84)90021-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1984-07, Vol.55 (1), p.157-165
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_24298947
source Elsevier ScienceDirect Journals; NASA Technical Reports Server
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Numerical Analysis
Optics
Physics
Wave optics
Wave propagation, transmission and absorption
title Numerical computations on one-dimensional inverse scattering problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20computations%20on%20one-dimensional%20inverse%20scattering%20problems&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Dunn,%20Mark%20H&rft.date=1984-07-01&rft.volume=55&rft.issue=1&rft.spage=157&rft.epage=165&rft.pages=157-165&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(84)90021-4&rft_dat=%3Cproquest_cross%3E24298947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24298947&rft_id=info:pmid/&rft_els_id=0021999184900214&rfr_iscdi=true