Numerical computations on one-dimensional inverse scattering problems
In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 1984-07, Vol.55 (1), p.157-165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 1 |
container_start_page | 157 |
container_title | Journal of computational physics |
container_volume | 55 |
creator | Dunn, Mark H Hariharan, S.I |
description | In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yields an additional initial condition. We approximate the index of refraction by a
kth-order spline which can be written as a linear combination of
B-splines. For
N/2 distinct reflection coefficients, the resulting
N/2 initial value problems yield a system of
N nonlinear equations in
N unknowns which are the coefficients of the
B-splines. |
doi_str_mv | 10.1016/0021-9991(84)90021-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24298947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999184900214</els_id><sourcerecordid>24298947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a1ac171ff716eca75b874dc0a1ec4b778a025a99b01b87cd4431f493265bb2463</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-gz30IKKHapKmbXIRZFn_wKIXPYc0nUqkTddMK_jtzW6XPQqBIXm_N5l5hCwYvWWUFXeUcpYqpdi1FDdqdxNHZMaooikvWXFMZgfklJwhflFKZS7kjKxexw6Cs6ZNbN9txsEMrveY9D4eSGvXgcf4EnXnfyAgJGjNMESP_0w2oa9a6PCcnDSmRbjY1zn5eFy9L5_T9dvTy_JhndpM8iE1zFhWsqaJM4E1ZV7JUtSWGgZWVGUpDeW5UaqiLCq2FiJjjVAZL_Kq4qLI5uRq6hs__h4BB905tNC2xkM_ouaCK6lEGUExgTb0iAEavQmuM-FXM6q3meltIHobiJZC7zLTItou9_1N3LJtgvHW4cGraCFLySO2mDBv0Gg_BNRMSUFprjIpo3w_yRCj-HEQNFoH3kLtAthB1737f4w_1qaIvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24298947</pqid></control><display><type>article</type><title>Numerical computations on one-dimensional inverse scattering problems</title><source>Elsevier ScienceDirect Journals</source><source>NASA Technical Reports Server</source><creator>Dunn, Mark H ; Hariharan, S.I</creator><creatorcontrib>Dunn, Mark H ; Hariharan, S.I</creatorcontrib><description>In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yields an additional initial condition. We approximate the index of refraction by a
kth-order spline which can be written as a linear combination of
B-splines. For
N/2 distinct reflection coefficients, the resulting
N/2 initial value problems yield a system of
N nonlinear equations in
N unknowns which are the coefficients of the
B-splines.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(84)90021-4</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Inc</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Numerical Analysis ; Optics ; Physics ; Wave optics ; Wave propagation, transmission and absorption</subject><ispartof>Journal of computational physics, 1984-07, Vol.55 (1), p.157-165</ispartof><rights>1984</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-a1ac171ff716eca75b874dc0a1ec4b778a025a99b01b87cd4431f493265bb2463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0021999184900214$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9068782$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunn, Mark H</creatorcontrib><creatorcontrib>Hariharan, S.I</creatorcontrib><title>Numerical computations on one-dimensional inverse scattering problems</title><title>Journal of computational physics</title><description>In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yields an additional initial condition. We approximate the index of refraction by a
kth-order spline which can be written as a linear combination of
B-splines. For
N/2 distinct reflection coefficients, the resulting
N/2 initial value problems yield a system of
N nonlinear equations in
N unknowns which are the coefficients of the
B-splines.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Numerical Analysis</subject><subject>Optics</subject><subject>Physics</subject><subject>Wave optics</subject><subject>Wave propagation, transmission and absorption</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kE9LxDAQxYMouK5-gz30IKKHapKmbXIRZFn_wKIXPYc0nUqkTddMK_jtzW6XPQqBIXm_N5l5hCwYvWWUFXeUcpYqpdi1FDdqdxNHZMaooikvWXFMZgfklJwhflFKZS7kjKxexw6Cs6ZNbN9txsEMrveY9D4eSGvXgcf4EnXnfyAgJGjNMESP_0w2oa9a6PCcnDSmRbjY1zn5eFy9L5_T9dvTy_JhndpM8iE1zFhWsqaJM4E1ZV7JUtSWGgZWVGUpDeW5UaqiLCq2FiJjjVAZL_Kq4qLI5uRq6hs__h4BB905tNC2xkM_ouaCK6lEGUExgTb0iAEavQmuM-FXM6q3meltIHobiJZC7zLTItou9_1N3LJtgvHW4cGraCFLySO2mDBv0Gg_BNRMSUFprjIpo3w_yRCj-HEQNFoH3kLtAthB1737f4w_1qaIvw</recordid><startdate>19840701</startdate><enddate>19840701</enddate><creator>Dunn, Mark H</creator><creator>Hariharan, S.I</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19840701</creationdate><title>Numerical computations on one-dimensional inverse scattering problems</title><author>Dunn, Mark H ; Hariharan, S.I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a1ac171ff716eca75b874dc0a1ec4b778a025a99b01b87cd4431f493265bb2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Numerical Analysis</topic><topic>Optics</topic><topic>Physics</topic><topic>Wave optics</topic><topic>Wave propagation, transmission and absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunn, Mark H</creatorcontrib><creatorcontrib>Hariharan, S.I</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunn, Mark H</au><au>Hariharan, S.I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical computations on one-dimensional inverse scattering problems</atitle><jtitle>Journal of computational physics</jtitle><date>1984-07-01</date><risdate>1984</risdate><volume>55</volume><issue>1</issue><spage>157</spage><epage>165</epage><pages>157-165</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this note we present an approximate method to detemine the index of refraction of a dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic scattering. The governing equations yield a second-order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yields an additional initial condition. We approximate the index of refraction by a
kth-order spline which can be written as a linear combination of
B-splines. For
N/2 distinct reflection coefficients, the resulting
N/2 initial value problems yield a system of
N nonlinear equations in
N unknowns which are the coefficients of the
B-splines.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(84)90021-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 1984-07, Vol.55 (1), p.157-165 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_24298947 |
source | Elsevier ScienceDirect Journals; NASA Technical Reports Server |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Numerical Analysis Optics Physics Wave optics Wave propagation, transmission and absorption |
title | Numerical computations on one-dimensional inverse scattering problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20computations%20on%20one-dimensional%20inverse%20scattering%20problems&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Dunn,%20Mark%20H&rft.date=1984-07-01&rft.volume=55&rft.issue=1&rft.spage=157&rft.epage=165&rft.pages=157-165&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(84)90021-4&rft_dat=%3Cproquest_cross%3E24298947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24298947&rft_id=info:pmid/&rft_els_id=0021999184900214&rfr_iscdi=true |