Activation of ERK1/2-mTORC1-NOX4 mediates TGF-β1-induced epithelial-mesenchymal transition and fibrosis in retinal pigment epithelial cells

Transforming growth factor-β (TGF-β) plays a crucial role in the development of epithelial to mesenchymal transition (EMT) and fibrosis, particularly in an ocular disorder such as proliferative vitreoretinopathy (PVR). However, the key molecular mechanism underlying its pathogenesis remains unknown....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2020-08, Vol.529 (3), p.747-752
Hauptverfasser: Kim, Soo-Jin, Kim, Yun-Sang, Kim, Jeong Hun, Jang, Ha Young, Ly, Dat Da, Das, Ranjan, Park, Kyu-Sang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transforming growth factor-β (TGF-β) plays a crucial role in the development of epithelial to mesenchymal transition (EMT) and fibrosis, particularly in an ocular disorder such as proliferative vitreoretinopathy (PVR). However, the key molecular mechanism underlying its pathogenesis remains unknown. In the present study, using cultured ARPE-19 cells, we determined that TGF-β initiates a signaling pathway through extracellular signal-regulated kinase (ERK)-mammalian target of rapamycin complex 1 (mTORC1) that stimulates trans-differentiation and fibrosis of retinal pigment epithelium. Blocking this pathway by a TGF-βRI, ERK or mTORC1 inhibitor protected cells from EMT and fibrotic protein expression. TGF-β1 treatment increased reactive oxygen species (ROS) via NOX4 upregulation, which acts downstream of ERK and mTORC1, as the ROS scavenger N-acetylcysteine and a pan-NADPH oxidase (NOX) inhibitor DPI dissipated excess ROS generation. TGF-β1-induced oxidative stress resulted in EMT and fibrotic changes, as NAC and DPI prevented α-SMA, Col4α3 expression and cell migration. All these inhibitors blocked the downstream pathway activation in addition to clearly preventing the activation of its upstream molecules, indicating the presence of a feedback loop system that may boost the upstream events. Furthermore, the FDA-approved drug trametinib (10 nM) blunted TGF-β1-induced mTORC1 activation and downstream pathogenic alterations through ERK1/2 inhibition, which opens a therapeutic avenue for the treatment of PVR in the future. •TGF-β induces EMT and fibrosis in retinal pigment epithelial cells via ERK1/2-mTORC1-NOX4 axis.•TGF-β1 increases both cytosolic and mitochondrial ROS production through NOX4 upregulation.•Scavenging oxidative stress or NOX inhibition successfully prevents TGF-β-induced EMT and fibrosis.•FDA-approved drug trametinib effectively prevents EMT and fibrosis by inhibition of ERK-mTOR signaling.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2020.06.034