A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition
Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstoni...
Gespeichert in:
Veröffentlicht in: | Cell host & microbe 2020-10, Vol.28 (4), p.548-557.e7 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 557.e7 |
---|---|
container_issue | 4 |
container_start_page | 548 |
container_title | Cell host & microbe |
container_volume | 28 |
creator | Xian, Liu Yu, Gang Wei, Yali Rufian, Jose S. Li, Yansha Zhuang, Haiyan Xue, Hao Morcillo, Rafael J.L. Macho, Alberto P. |
description | Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization.
[Display omitted]
•The effector protein RipI contributes to virulence of the phytopathogen R. solanacearum•RipI interacts with plant calmodulin and GADs•RipI promotes calmodulin binding to GADs, enhancing GAD activity and GABA production•R. solanacearum uses GABA as a nutrient, and plant GABA contributes to infection
Xian et al. show that the effector protein RipI, from the bacterial plant pathogen Ralstonia solanacearum, manipulates plant metabolism. RipI promotes the biochemical activation of glutamate decarboxylases in plant cells, enhancing the production of GABA to support bacterial nutrition during plant infection. |
doi_str_mv | 10.1016/j.chom.2020.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2429780715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1931312820303991</els_id><sourcerecordid>2429780715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a6cab851aeea2385210a56766f8e9cb388120e35aa4badf007b44ee7fc7297fe3</originalsourceid><addsrcrecordid>eNp9kMtO5DAQRS0E4jk_MAvkJZuEsp3EbokNIBiQeLQEs7Ycd2Vwk8SN7SDx9-OmYZazqlqce1V1CPnJoGTAmtNlaV_8UHLgUIIsAcQW2WczURUNNLPtz50VgnG1Rw5iXALUNUi2S_YEl6JWldonT-f0wtiEwZmeXnUd2uQDnQef0I30xi2NfY103psx0XtMpvW9iwNNnj5Nq5UPic5NevF_cKQPUwouOT8ekZ3O9BF_fM1D8vv66vnyprh7_HV7eX5X2AogFaaxplU1M4iGC1VzBqZuZNN0Cme2FUoxDihqY6rWLDoA2VYVouys5DPZoTgkJ5veVfBvE8akBxct9vlY9FPUvMqcyh_XGeUb1AYfY8BOr4IbTPjQDPRapl7qtUy9lqlB6iwzh46_-qd2wMW_yLe9DJxtAMxfvjsMOlqHo8WFC1mkXnj3v_6_OPCF9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429780715</pqid></control><display><type>article</type><title>A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xian, Liu ; Yu, Gang ; Wei, Yali ; Rufian, Jose S. ; Li, Yansha ; Zhuang, Haiyan ; Xue, Hao ; Morcillo, Rafael J.L. ; Macho, Alberto P.</creator><creatorcontrib>Xian, Liu ; Yu, Gang ; Wei, Yali ; Rufian, Jose S. ; Li, Yansha ; Zhuang, Haiyan ; Xue, Hao ; Morcillo, Rafael J.L. ; Macho, Alberto P.</creatorcontrib><description>Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization.
[Display omitted]
•The effector protein RipI contributes to virulence of the phytopathogen R. solanacearum•RipI interacts with plant calmodulin and GADs•RipI promotes calmodulin binding to GADs, enhancing GAD activity and GABA production•R. solanacearum uses GABA as a nutrient, and plant GABA contributes to infection
Xian et al. show that the effector protein RipI, from the bacterial plant pathogen Ralstonia solanacearum, manipulates plant metabolism. RipI promotes the biochemical activation of glutamate decarboxylases in plant cells, enhancing the production of GABA to support bacterial nutrition during plant infection.</description><identifier>ISSN: 1931-3128</identifier><identifier>EISSN: 1934-6069</identifier><identifier>DOI: 10.1016/j.chom.2020.07.003</identifier><identifier>PMID: 32735848</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arabidopsis ; Bacterial Proteins - metabolism ; Bacterial Proteins - pharmacology ; calmodulin ; effector ; GABA ; GAD ; gamma-Aminobutyric Acid - metabolism ; Host-Pathogen Interactions - physiology ; metabolism ; Nicotiana ; nutrition ; Plant Diseases - immunology ; Plant Immunity ; Plants - drug effects ; Plants - immunology ; Plants - metabolism ; Plants - microbiology ; Ralstonia ; Ralstonia solanacearum - growth & development ; Ralstonia solanacearum - metabolism ; Solanum lycopersicum ; Type III Secretion Systems - metabolism ; Virulence</subject><ispartof>Cell host & microbe, 2020-10, Vol.28 (4), p.548-557.e7</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a6cab851aeea2385210a56766f8e9cb388120e35aa4badf007b44ee7fc7297fe3</citedby><cites>FETCH-LOGICAL-c400t-a6cab851aeea2385210a56766f8e9cb388120e35aa4badf007b44ee7fc7297fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1931312820303991$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32735848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xian, Liu</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Wei, Yali</creatorcontrib><creatorcontrib>Rufian, Jose S.</creatorcontrib><creatorcontrib>Li, Yansha</creatorcontrib><creatorcontrib>Zhuang, Haiyan</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Morcillo, Rafael J.L.</creatorcontrib><creatorcontrib>Macho, Alberto P.</creatorcontrib><title>A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition</title><title>Cell host & microbe</title><addtitle>Cell Host Microbe</addtitle><description>Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization.
[Display omitted]
•The effector protein RipI contributes to virulence of the phytopathogen R. solanacearum•RipI interacts with plant calmodulin and GADs•RipI promotes calmodulin binding to GADs, enhancing GAD activity and GABA production•R. solanacearum uses GABA as a nutrient, and plant GABA contributes to infection
Xian et al. show that the effector protein RipI, from the bacterial plant pathogen Ralstonia solanacearum, manipulates plant metabolism. RipI promotes the biochemical activation of glutamate decarboxylases in plant cells, enhancing the production of GABA to support bacterial nutrition during plant infection.</description><subject>Arabidopsis</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - pharmacology</subject><subject>calmodulin</subject><subject>effector</subject><subject>GABA</subject><subject>GAD</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>metabolism</subject><subject>Nicotiana</subject><subject>nutrition</subject><subject>Plant Diseases - immunology</subject><subject>Plant Immunity</subject><subject>Plants - drug effects</subject><subject>Plants - immunology</subject><subject>Plants - metabolism</subject><subject>Plants - microbiology</subject><subject>Ralstonia</subject><subject>Ralstonia solanacearum - growth & development</subject><subject>Ralstonia solanacearum - metabolism</subject><subject>Solanum lycopersicum</subject><subject>Type III Secretion Systems - metabolism</subject><subject>Virulence</subject><issn>1931-3128</issn><issn>1934-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtO5DAQRS0E4jk_MAvkJZuEsp3EbokNIBiQeLQEs7Ycd2Vwk8SN7SDx9-OmYZazqlqce1V1CPnJoGTAmtNlaV_8UHLgUIIsAcQW2WczURUNNLPtz50VgnG1Rw5iXALUNUi2S_YEl6JWldonT-f0wtiEwZmeXnUd2uQDnQef0I30xi2NfY103psx0XtMpvW9iwNNnj5Nq5UPic5NevF_cKQPUwouOT8ekZ3O9BF_fM1D8vv66vnyprh7_HV7eX5X2AogFaaxplU1M4iGC1VzBqZuZNN0Cme2FUoxDihqY6rWLDoA2VYVouys5DPZoTgkJ5veVfBvE8akBxct9vlY9FPUvMqcyh_XGeUb1AYfY8BOr4IbTPjQDPRapl7qtUy9lqlB6iwzh46_-qd2wMW_yLe9DJxtAMxfvjsMOlqHo8WFC1mkXnj3v_6_OPCF9A</recordid><startdate>20201007</startdate><enddate>20201007</enddate><creator>Xian, Liu</creator><creator>Yu, Gang</creator><creator>Wei, Yali</creator><creator>Rufian, Jose S.</creator><creator>Li, Yansha</creator><creator>Zhuang, Haiyan</creator><creator>Xue, Hao</creator><creator>Morcillo, Rafael J.L.</creator><creator>Macho, Alberto P.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20201007</creationdate><title>A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition</title><author>Xian, Liu ; Yu, Gang ; Wei, Yali ; Rufian, Jose S. ; Li, Yansha ; Zhuang, Haiyan ; Xue, Hao ; Morcillo, Rafael J.L. ; Macho, Alberto P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a6cab851aeea2385210a56766f8e9cb388120e35aa4badf007b44ee7fc7297fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - pharmacology</topic><topic>calmodulin</topic><topic>effector</topic><topic>GABA</topic><topic>GAD</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>metabolism</topic><topic>Nicotiana</topic><topic>nutrition</topic><topic>Plant Diseases - immunology</topic><topic>Plant Immunity</topic><topic>Plants - drug effects</topic><topic>Plants - immunology</topic><topic>Plants - metabolism</topic><topic>Plants - microbiology</topic><topic>Ralstonia</topic><topic>Ralstonia solanacearum - growth & development</topic><topic>Ralstonia solanacearum - metabolism</topic><topic>Solanum lycopersicum</topic><topic>Type III Secretion Systems - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xian, Liu</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Wei, Yali</creatorcontrib><creatorcontrib>Rufian, Jose S.</creatorcontrib><creatorcontrib>Li, Yansha</creatorcontrib><creatorcontrib>Zhuang, Haiyan</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Morcillo, Rafael J.L.</creatorcontrib><creatorcontrib>Macho, Alberto P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell host & microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xian, Liu</au><au>Yu, Gang</au><au>Wei, Yali</au><au>Rufian, Jose S.</au><au>Li, Yansha</au><au>Zhuang, Haiyan</au><au>Xue, Hao</au><au>Morcillo, Rafael J.L.</au><au>Macho, Alberto P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition</atitle><jtitle>Cell host & microbe</jtitle><addtitle>Cell Host Microbe</addtitle><date>2020-10-07</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>548</spage><epage>557.e7</epage><pages>548-557.e7</pages><issn>1931-3128</issn><eissn>1934-6069</eissn><abstract>Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization.
[Display omitted]
•The effector protein RipI contributes to virulence of the phytopathogen R. solanacearum•RipI interacts with plant calmodulin and GADs•RipI promotes calmodulin binding to GADs, enhancing GAD activity and GABA production•R. solanacearum uses GABA as a nutrient, and plant GABA contributes to infection
Xian et al. show that the effector protein RipI, from the bacterial plant pathogen Ralstonia solanacearum, manipulates plant metabolism. RipI promotes the biochemical activation of glutamate decarboxylases in plant cells, enhancing the production of GABA to support bacterial nutrition during plant infection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32735848</pmid><doi>10.1016/j.chom.2020.07.003</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-3128 |
ispartof | Cell host & microbe, 2020-10, Vol.28 (4), p.548-557.e7 |
issn | 1931-3128 1934-6069 |
language | eng |
recordid | cdi_proquest_miscellaneous_2429780715 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Arabidopsis Bacterial Proteins - metabolism Bacterial Proteins - pharmacology calmodulin effector GABA GAD gamma-Aminobutyric Acid - metabolism Host-Pathogen Interactions - physiology metabolism Nicotiana nutrition Plant Diseases - immunology Plant Immunity Plants - drug effects Plants - immunology Plants - metabolism Plants - microbiology Ralstonia Ralstonia solanacearum - growth & development Ralstonia solanacearum - metabolism Solanum lycopersicum Type III Secretion Systems - metabolism Virulence |
title | A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bacterial%20Effector%20Protein%20Hijacks%20Plant%20Metabolism%20to%20Support%20Pathogen%20Nutrition&rft.jtitle=Cell%20host%20&%20microbe&rft.au=Xian,%20Liu&rft.date=2020-10-07&rft.volume=28&rft.issue=4&rft.spage=548&rft.epage=557.e7&rft.pages=548-557.e7&rft.issn=1931-3128&rft.eissn=1934-6069&rft_id=info:doi/10.1016/j.chom.2020.07.003&rft_dat=%3Cproquest_cross%3E2429780715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429780715&rft_id=info:pmid/32735848&rft_els_id=S1931312820303991&rfr_iscdi=true |