A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition

Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell host & microbe 2020-10, Vol.28 (4), p.548-557.e7
Hauptverfasser: Xian, Liu, Yu, Gang, Wei, Yali, Rufian, Jose S., Li, Yansha, Zhuang, Haiyan, Xue, Hao, Morcillo, Rafael J.L., Macho, Alberto P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 557.e7
container_issue 4
container_start_page 548
container_title Cell host & microbe
container_volume 28
creator Xian, Liu
Yu, Gang
Wei, Yali
Rufian, Jose S.
Li, Yansha
Zhuang, Haiyan
Xue, Hao
Morcillo, Rafael J.L.
Macho, Alberto P.
description Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization. [Display omitted] •The effector protein RipI contributes to virulence of the phytopathogen R. solanacearum•RipI interacts with plant calmodulin and GADs•RipI promotes calmodulin binding to GADs, enhancing GAD activity and GABA production•R. solanacearum uses GABA as a nutrient, and plant GABA contributes to infection Xian et al. show that the effector protein RipI, from the bacterial plant pathogen Ralstonia solanacearum, manipulates plant metabolism. RipI promotes the biochemical activation of glutamate decarboxylases in plant cells, enhancing the production of GABA to support bacterial nutrition during plant infection.
doi_str_mv 10.1016/j.chom.2020.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2429780715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1931312820303991</els_id><sourcerecordid>2429780715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a6cab851aeea2385210a56766f8e9cb388120e35aa4badf007b44ee7fc7297fe3</originalsourceid><addsrcrecordid>eNp9kMtO5DAQRS0E4jk_MAvkJZuEsp3EbokNIBiQeLQEs7Ycd2Vwk8SN7SDx9-OmYZazqlqce1V1CPnJoGTAmtNlaV_8UHLgUIIsAcQW2WczURUNNLPtz50VgnG1Rw5iXALUNUi2S_YEl6JWldonT-f0wtiEwZmeXnUd2uQDnQef0I30xi2NfY103psx0XtMpvW9iwNNnj5Nq5UPic5NevF_cKQPUwouOT8ekZ3O9BF_fM1D8vv66vnyprh7_HV7eX5X2AogFaaxplU1M4iGC1VzBqZuZNN0Cme2FUoxDihqY6rWLDoA2VYVouys5DPZoTgkJ5veVfBvE8akBxct9vlY9FPUvMqcyh_XGeUb1AYfY8BOr4IbTPjQDPRapl7qtUy9lqlB6iwzh46_-qd2wMW_yLe9DJxtAMxfvjsMOlqHo8WFC1mkXnj3v_6_OPCF9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429780715</pqid></control><display><type>article</type><title>A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xian, Liu ; Yu, Gang ; Wei, Yali ; Rufian, Jose S. ; Li, Yansha ; Zhuang, Haiyan ; Xue, Hao ; Morcillo, Rafael J.L. ; Macho, Alberto P.</creator><creatorcontrib>Xian, Liu ; Yu, Gang ; Wei, Yali ; Rufian, Jose S. ; Li, Yansha ; Zhuang, Haiyan ; Xue, Hao ; Morcillo, Rafael J.L. ; Macho, Alberto P.</creatorcontrib><description>Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization. [Display omitted] •The effector protein RipI contributes to virulence of the phytopathogen R. solanacearum•RipI interacts with plant calmodulin and GADs•RipI promotes calmodulin binding to GADs, enhancing GAD activity and GABA production•R. solanacearum uses GABA as a nutrient, and plant GABA contributes to infection Xian et al. show that the effector protein RipI, from the bacterial plant pathogen Ralstonia solanacearum, manipulates plant metabolism. RipI promotes the biochemical activation of glutamate decarboxylases in plant cells, enhancing the production of GABA to support bacterial nutrition during plant infection.</description><identifier>ISSN: 1931-3128</identifier><identifier>EISSN: 1934-6069</identifier><identifier>DOI: 10.1016/j.chom.2020.07.003</identifier><identifier>PMID: 32735848</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arabidopsis ; Bacterial Proteins - metabolism ; Bacterial Proteins - pharmacology ; calmodulin ; effector ; GABA ; GAD ; gamma-Aminobutyric Acid - metabolism ; Host-Pathogen Interactions - physiology ; metabolism ; Nicotiana ; nutrition ; Plant Diseases - immunology ; Plant Immunity ; Plants - drug effects ; Plants - immunology ; Plants - metabolism ; Plants - microbiology ; Ralstonia ; Ralstonia solanacearum - growth &amp; development ; Ralstonia solanacearum - metabolism ; Solanum lycopersicum ; Type III Secretion Systems - metabolism ; Virulence</subject><ispartof>Cell host &amp; microbe, 2020-10, Vol.28 (4), p.548-557.e7</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a6cab851aeea2385210a56766f8e9cb388120e35aa4badf007b44ee7fc7297fe3</citedby><cites>FETCH-LOGICAL-c400t-a6cab851aeea2385210a56766f8e9cb388120e35aa4badf007b44ee7fc7297fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1931312820303991$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32735848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xian, Liu</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Wei, Yali</creatorcontrib><creatorcontrib>Rufian, Jose S.</creatorcontrib><creatorcontrib>Li, Yansha</creatorcontrib><creatorcontrib>Zhuang, Haiyan</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Morcillo, Rafael J.L.</creatorcontrib><creatorcontrib>Macho, Alberto P.</creatorcontrib><title>A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition</title><title>Cell host &amp; microbe</title><addtitle>Cell Host Microbe</addtitle><description>Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization. [Display omitted] •The effector protein RipI contributes to virulence of the phytopathogen R. solanacearum•RipI interacts with plant calmodulin and GADs•RipI promotes calmodulin binding to GADs, enhancing GAD activity and GABA production•R. solanacearum uses GABA as a nutrient, and plant GABA contributes to infection Xian et al. show that the effector protein RipI, from the bacterial plant pathogen Ralstonia solanacearum, manipulates plant metabolism. RipI promotes the biochemical activation of glutamate decarboxylases in plant cells, enhancing the production of GABA to support bacterial nutrition during plant infection.</description><subject>Arabidopsis</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - pharmacology</subject><subject>calmodulin</subject><subject>effector</subject><subject>GABA</subject><subject>GAD</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>metabolism</subject><subject>Nicotiana</subject><subject>nutrition</subject><subject>Plant Diseases - immunology</subject><subject>Plant Immunity</subject><subject>Plants - drug effects</subject><subject>Plants - immunology</subject><subject>Plants - metabolism</subject><subject>Plants - microbiology</subject><subject>Ralstonia</subject><subject>Ralstonia solanacearum - growth &amp; development</subject><subject>Ralstonia solanacearum - metabolism</subject><subject>Solanum lycopersicum</subject><subject>Type III Secretion Systems - metabolism</subject><subject>Virulence</subject><issn>1931-3128</issn><issn>1934-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtO5DAQRS0E4jk_MAvkJZuEsp3EbokNIBiQeLQEs7Ycd2Vwk8SN7SDx9-OmYZazqlqce1V1CPnJoGTAmtNlaV_8UHLgUIIsAcQW2WczURUNNLPtz50VgnG1Rw5iXALUNUi2S_YEl6JWldonT-f0wtiEwZmeXnUd2uQDnQef0I30xi2NfY103psx0XtMpvW9iwNNnj5Nq5UPic5NevF_cKQPUwouOT8ekZ3O9BF_fM1D8vv66vnyprh7_HV7eX5X2AogFaaxplU1M4iGC1VzBqZuZNN0Cme2FUoxDihqY6rWLDoA2VYVouys5DPZoTgkJ5veVfBvE8akBxct9vlY9FPUvMqcyh_XGeUb1AYfY8BOr4IbTPjQDPRapl7qtUy9lqlB6iwzh46_-qd2wMW_yLe9DJxtAMxfvjsMOlqHo8WFC1mkXnj3v_6_OPCF9A</recordid><startdate>20201007</startdate><enddate>20201007</enddate><creator>Xian, Liu</creator><creator>Yu, Gang</creator><creator>Wei, Yali</creator><creator>Rufian, Jose S.</creator><creator>Li, Yansha</creator><creator>Zhuang, Haiyan</creator><creator>Xue, Hao</creator><creator>Morcillo, Rafael J.L.</creator><creator>Macho, Alberto P.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20201007</creationdate><title>A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition</title><author>Xian, Liu ; Yu, Gang ; Wei, Yali ; Rufian, Jose S. ; Li, Yansha ; Zhuang, Haiyan ; Xue, Hao ; Morcillo, Rafael J.L. ; Macho, Alberto P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a6cab851aeea2385210a56766f8e9cb388120e35aa4badf007b44ee7fc7297fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - pharmacology</topic><topic>calmodulin</topic><topic>effector</topic><topic>GABA</topic><topic>GAD</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>metabolism</topic><topic>Nicotiana</topic><topic>nutrition</topic><topic>Plant Diseases - immunology</topic><topic>Plant Immunity</topic><topic>Plants - drug effects</topic><topic>Plants - immunology</topic><topic>Plants - metabolism</topic><topic>Plants - microbiology</topic><topic>Ralstonia</topic><topic>Ralstonia solanacearum - growth &amp; development</topic><topic>Ralstonia solanacearum - metabolism</topic><topic>Solanum lycopersicum</topic><topic>Type III Secretion Systems - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xian, Liu</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Wei, Yali</creatorcontrib><creatorcontrib>Rufian, Jose S.</creatorcontrib><creatorcontrib>Li, Yansha</creatorcontrib><creatorcontrib>Zhuang, Haiyan</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Morcillo, Rafael J.L.</creatorcontrib><creatorcontrib>Macho, Alberto P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell host &amp; microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xian, Liu</au><au>Yu, Gang</au><au>Wei, Yali</au><au>Rufian, Jose S.</au><au>Li, Yansha</au><au>Zhuang, Haiyan</au><au>Xue, Hao</au><au>Morcillo, Rafael J.L.</au><au>Macho, Alberto P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition</atitle><jtitle>Cell host &amp; microbe</jtitle><addtitle>Cell Host Microbe</addtitle><date>2020-10-07</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>548</spage><epage>557.e7</epage><pages>548-557.e7</pages><issn>1931-3128</issn><eissn>1934-6069</eissn><abstract>Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization. [Display omitted] •The effector protein RipI contributes to virulence of the phytopathogen R. solanacearum•RipI interacts with plant calmodulin and GADs•RipI promotes calmodulin binding to GADs, enhancing GAD activity and GABA production•R. solanacearum uses GABA as a nutrient, and plant GABA contributes to infection Xian et al. show that the effector protein RipI, from the bacterial plant pathogen Ralstonia solanacearum, manipulates plant metabolism. RipI promotes the biochemical activation of glutamate decarboxylases in plant cells, enhancing the production of GABA to support bacterial nutrition during plant infection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32735848</pmid><doi>10.1016/j.chom.2020.07.003</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-3128
ispartof Cell host & microbe, 2020-10, Vol.28 (4), p.548-557.e7
issn 1931-3128
1934-6069
language eng
recordid cdi_proquest_miscellaneous_2429780715
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Arabidopsis
Bacterial Proteins - metabolism
Bacterial Proteins - pharmacology
calmodulin
effector
GABA
GAD
gamma-Aminobutyric Acid - metabolism
Host-Pathogen Interactions - physiology
metabolism
Nicotiana
nutrition
Plant Diseases - immunology
Plant Immunity
Plants - drug effects
Plants - immunology
Plants - metabolism
Plants - microbiology
Ralstonia
Ralstonia solanacearum - growth & development
Ralstonia solanacearum - metabolism
Solanum lycopersicum
Type III Secretion Systems - metabolism
Virulence
title A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bacterial%20Effector%20Protein%20Hijacks%20Plant%20Metabolism%20to%20Support%20Pathogen%20Nutrition&rft.jtitle=Cell%20host%20&%20microbe&rft.au=Xian,%20Liu&rft.date=2020-10-07&rft.volume=28&rft.issue=4&rft.spage=548&rft.epage=557.e7&rft.pages=548-557.e7&rft.issn=1931-3128&rft.eissn=1934-6069&rft_id=info:doi/10.1016/j.chom.2020.07.003&rft_dat=%3Cproquest_cross%3E2429780715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429780715&rft_id=info:pmid/32735848&rft_els_id=S1931312820303991&rfr_iscdi=true