Boosted molecular mobility during common chemical reactions

Mobility of reactants and nearby solvent is more rapid than Brownian diffusion during several common chemical reactions when the energy release rate exceeds a threshold. Screening a family of 15 organic chemical reactions, we demonstrate the largest boost for catalyzed bimolecular reactions, click c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-07, Vol.369 (6503), p.537-541
Hauptverfasser: Wang, Huan, Park, Myeonggon, Dong, Ruoyu, Kim, Junyoung, Cho, Yoon-Kyoung, Tlusty, Tsvi, Granick, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mobility of reactants and nearby solvent is more rapid than Brownian diffusion during several common chemical reactions when the energy release rate exceeds a threshold. Screening a family of 15 organic chemical reactions, we demonstrate the largest boost for catalyzed bimolecular reactions, click chemistry, ring-opening metathesis polymerization, and Sonogashira coupling. Boosted diffusion is also observed but to lesser extent for the uncatalyzed Diels-Alder reaction, but not for substitution reactions S 1 and S 2 within instrumental resolution. Diffusion coefficient increases as measured by pulsed-field gradient nuclear magnetic resonance, whereas in microfluidics experiments, molecules in reaction gradients migrate "uphill" in the direction of lesser diffusivity. This microscopic consumption of energy by chemical reactions transduced into mechanical motion presents a form of active matter.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aba8425