Development and Validation of a Seizure Prediction Model in Neonates After Cardiac Surgery

Electroencephalographic seizures (ESs) after neonatal cardiac surgery are often subclinical and have been associated with poor outcomes. An accurate ES prediction model could allow targeted continuous electroencephalographic monitoring (CEEG) for high-risk neonates. ES prediction models were develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of thoracic surgery 2021-06, Vol.111 (6), p.2041-2048
Hauptverfasser: Naim, Maryam Y., Putt, Mary, Abend, Nicholas S., Mastropietro, Christopher W., Frank, Deborah U., Chen, Jonathan M., Fuller, Stephanie, Gangemi, James J., Gaynor, J. William, Heinan, Kristin, Licht, Daniel J., Mascio, Christopher E., Massey, Shavonne, Roeser, Mark E., Smith, Clyde J., Kimmel, Stephen E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2048
container_issue 6
container_start_page 2041
container_title The Annals of thoracic surgery
container_volume 111
creator Naim, Maryam Y.
Putt, Mary
Abend, Nicholas S.
Mastropietro, Christopher W.
Frank, Deborah U.
Chen, Jonathan M.
Fuller, Stephanie
Gangemi, James J.
Gaynor, J. William
Heinan, Kristin
Licht, Daniel J.
Mascio, Christopher E.
Massey, Shavonne
Roeser, Mark E.
Smith, Clyde J.
Kimmel, Stephen E.
description Electroencephalographic seizures (ESs) after neonatal cardiac surgery are often subclinical and have been associated with poor outcomes. An accurate ES prediction model could allow targeted continuous electroencephalographic monitoring (CEEG) for high-risk neonates. ES prediction models were developed and validated in a multicenter prospective cohort where all postoperative neonates who underwent cardiopulmonary bypass (CPB) also underwent CEEG. ESs occurred in 7.4% of neonates (78 of 1053). Model predictors included gestational age, head circumference, single-ventricle defect, deep hypothermic circulatory arrest duration, cardiac arrest, nitric oxide, extracorporeal membrane oxygenation, and delayed sternal closure. The model performed well in the derivation cohort (c-statistic, 0.77; Hosmer-Lemeshow, P = .56), with a net benefit (NB) over monitoring all and none over a threshold probability of 2% in decision curve analysis (DCA). The model had good calibration in the validation cohort (Hosmer-Lemeshow, P = .60); however, discrimination was poor (c-statistic, 0.61), and in DCA there was no NB of the prediction model between the threshold probabilities of 8% and 18%. By using a cut point that emphasized negative predictive value in the derivation cohort, 32% (236 of 737) of neonates would not undergo CEEG, including 3.5% (2 of 58) of neonates with ESs (negative predictive value, 99%; sensitivity, 97%). In this large prospective cohort, a prediction model of ESs in neonates after CPB had good performance in the derivation cohort, with an NB in DCA. However, performance in the validation cohort was weak, with poor discrimination, poor calibration, and no NB in DCA. These findings support CEEG of all neonates after CPB.
doi_str_mv 10.1016/j.athoracsur.2020.05.157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2429774032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003497520312145</els_id><sourcerecordid>2429774032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-541591bcdfee5675c844aca894534b093dac9b8b7efdc8553621cd76a994e5043</originalsourceid><addsrcrecordid>eNqFkElPwzAQhS0EglL4C8hHLgm2YyfxsZRVKovEcuBiOfYEXKVxsZNK8OsJlOXIaTQz783TfAhhSlJKaH40T3X34oM2sQ8pI4ykRKRUFBtoRIVgSc6E3EQjQkiWcFmIHbQb43xo2bDeRjsZK7KSMT5CTyewgsYvF9B2WLcWP-rGWd0532JfY43vwL33AfBtAOvM1_zKW2iwa_E1-FZ3EPGk7iDgqQ7WaYPv-vAM4W0PbdW6ibD_Xcfo4ez0fnqRzG7OL6eTWWI4410iOBWSVsbWACIvhCk510aXkouMV0RmVhtZlVUBtTWlEFnOqLFFrqXkIAjPxuhwfXcZ_GsPsVMLFw00jW7B91ExzmRRcJKxQVqupSb4GAPUahncQoc3RYn6JKvm6o-s-iSriFAD2cF68J3SVwuwv8YflIPgeC2A4deVg6CicdCaAVsA0ynr3f8pH4d9j5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429774032</pqid></control><display><type>article</type><title>Development and Validation of a Seizure Prediction Model in Neonates After Cardiac Surgery</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Naim, Maryam Y. ; Putt, Mary ; Abend, Nicholas S. ; Mastropietro, Christopher W. ; Frank, Deborah U. ; Chen, Jonathan M. ; Fuller, Stephanie ; Gangemi, James J. ; Gaynor, J. William ; Heinan, Kristin ; Licht, Daniel J. ; Mascio, Christopher E. ; Massey, Shavonne ; Roeser, Mark E. ; Smith, Clyde J. ; Kimmel, Stephen E.</creator><creatorcontrib>Naim, Maryam Y. ; Putt, Mary ; Abend, Nicholas S. ; Mastropietro, Christopher W. ; Frank, Deborah U. ; Chen, Jonathan M. ; Fuller, Stephanie ; Gangemi, James J. ; Gaynor, J. William ; Heinan, Kristin ; Licht, Daniel J. ; Mascio, Christopher E. ; Massey, Shavonne ; Roeser, Mark E. ; Smith, Clyde J. ; Kimmel, Stephen E.</creatorcontrib><description>Electroencephalographic seizures (ESs) after neonatal cardiac surgery are often subclinical and have been associated with poor outcomes. An accurate ES prediction model could allow targeted continuous electroencephalographic monitoring (CEEG) for high-risk neonates. ES prediction models were developed and validated in a multicenter prospective cohort where all postoperative neonates who underwent cardiopulmonary bypass (CPB) also underwent CEEG. ESs occurred in 7.4% of neonates (78 of 1053). Model predictors included gestational age, head circumference, single-ventricle defect, deep hypothermic circulatory arrest duration, cardiac arrest, nitric oxide, extracorporeal membrane oxygenation, and delayed sternal closure. The model performed well in the derivation cohort (c-statistic, 0.77; Hosmer-Lemeshow, P = .56), with a net benefit (NB) over monitoring all and none over a threshold probability of 2% in decision curve analysis (DCA). The model had good calibration in the validation cohort (Hosmer-Lemeshow, P = .60); however, discrimination was poor (c-statistic, 0.61), and in DCA there was no NB of the prediction model between the threshold probabilities of 8% and 18%. By using a cut point that emphasized negative predictive value in the derivation cohort, 32% (236 of 737) of neonates would not undergo CEEG, including 3.5% (2 of 58) of neonates with ESs (negative predictive value, 99%; sensitivity, 97%). In this large prospective cohort, a prediction model of ESs in neonates after CPB had good performance in the derivation cohort, with an NB in DCA. However, performance in the validation cohort was weak, with poor discrimination, poor calibration, and no NB in DCA. These findings support CEEG of all neonates after CPB.</description><identifier>ISSN: 0003-4975</identifier><identifier>EISSN: 1552-6259</identifier><identifier>DOI: 10.1016/j.athoracsur.2020.05.157</identifier><identifier>PMID: 32738224</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><ispartof>The Annals of thoracic surgery, 2021-06, Vol.111 (6), p.2041-2048</ispartof><rights>2021 The Society of Thoracic Surgeons</rights><rights>Copyright © 2021. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-541591bcdfee5675c844aca894534b093dac9b8b7efdc8553621cd76a994e5043</citedby><cites>FETCH-LOGICAL-c424t-541591bcdfee5675c844aca894534b093dac9b8b7efdc8553621cd76a994e5043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32738224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naim, Maryam Y.</creatorcontrib><creatorcontrib>Putt, Mary</creatorcontrib><creatorcontrib>Abend, Nicholas S.</creatorcontrib><creatorcontrib>Mastropietro, Christopher W.</creatorcontrib><creatorcontrib>Frank, Deborah U.</creatorcontrib><creatorcontrib>Chen, Jonathan M.</creatorcontrib><creatorcontrib>Fuller, Stephanie</creatorcontrib><creatorcontrib>Gangemi, James J.</creatorcontrib><creatorcontrib>Gaynor, J. William</creatorcontrib><creatorcontrib>Heinan, Kristin</creatorcontrib><creatorcontrib>Licht, Daniel J.</creatorcontrib><creatorcontrib>Mascio, Christopher E.</creatorcontrib><creatorcontrib>Massey, Shavonne</creatorcontrib><creatorcontrib>Roeser, Mark E.</creatorcontrib><creatorcontrib>Smith, Clyde J.</creatorcontrib><creatorcontrib>Kimmel, Stephen E.</creatorcontrib><title>Development and Validation of a Seizure Prediction Model in Neonates After Cardiac Surgery</title><title>The Annals of thoracic surgery</title><addtitle>Ann Thorac Surg</addtitle><description>Electroencephalographic seizures (ESs) after neonatal cardiac surgery are often subclinical and have been associated with poor outcomes. An accurate ES prediction model could allow targeted continuous electroencephalographic monitoring (CEEG) for high-risk neonates. ES prediction models were developed and validated in a multicenter prospective cohort where all postoperative neonates who underwent cardiopulmonary bypass (CPB) also underwent CEEG. ESs occurred in 7.4% of neonates (78 of 1053). Model predictors included gestational age, head circumference, single-ventricle defect, deep hypothermic circulatory arrest duration, cardiac arrest, nitric oxide, extracorporeal membrane oxygenation, and delayed sternal closure. The model performed well in the derivation cohort (c-statistic, 0.77; Hosmer-Lemeshow, P = .56), with a net benefit (NB) over monitoring all and none over a threshold probability of 2% in decision curve analysis (DCA). The model had good calibration in the validation cohort (Hosmer-Lemeshow, P = .60); however, discrimination was poor (c-statistic, 0.61), and in DCA there was no NB of the prediction model between the threshold probabilities of 8% and 18%. By using a cut point that emphasized negative predictive value in the derivation cohort, 32% (236 of 737) of neonates would not undergo CEEG, including 3.5% (2 of 58) of neonates with ESs (negative predictive value, 99%; sensitivity, 97%). In this large prospective cohort, a prediction model of ESs in neonates after CPB had good performance in the derivation cohort, with an NB in DCA. However, performance in the validation cohort was weak, with poor discrimination, poor calibration, and no NB in DCA. These findings support CEEG of all neonates after CPB.</description><issn>0003-4975</issn><issn>1552-6259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkElPwzAQhS0EglL4C8hHLgm2YyfxsZRVKovEcuBiOfYEXKVxsZNK8OsJlOXIaTQz783TfAhhSlJKaH40T3X34oM2sQ8pI4ykRKRUFBtoRIVgSc6E3EQjQkiWcFmIHbQb43xo2bDeRjsZK7KSMT5CTyewgsYvF9B2WLcWP-rGWd0532JfY43vwL33AfBtAOvM1_zKW2iwa_E1-FZ3EPGk7iDgqQ7WaYPv-vAM4W0PbdW6ibD_Xcfo4ez0fnqRzG7OL6eTWWI4410iOBWSVsbWACIvhCk510aXkouMV0RmVhtZlVUBtTWlEFnOqLFFrqXkIAjPxuhwfXcZ_GsPsVMLFw00jW7B91ExzmRRcJKxQVqupSb4GAPUahncQoc3RYn6JKvm6o-s-iSriFAD2cF68J3SVwuwv8YflIPgeC2A4deVg6CicdCaAVsA0ynr3f8pH4d9j5M</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Naim, Maryam Y.</creator><creator>Putt, Mary</creator><creator>Abend, Nicholas S.</creator><creator>Mastropietro, Christopher W.</creator><creator>Frank, Deborah U.</creator><creator>Chen, Jonathan M.</creator><creator>Fuller, Stephanie</creator><creator>Gangemi, James J.</creator><creator>Gaynor, J. William</creator><creator>Heinan, Kristin</creator><creator>Licht, Daniel J.</creator><creator>Mascio, Christopher E.</creator><creator>Massey, Shavonne</creator><creator>Roeser, Mark E.</creator><creator>Smith, Clyde J.</creator><creator>Kimmel, Stephen E.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210601</creationdate><title>Development and Validation of a Seizure Prediction Model in Neonates After Cardiac Surgery</title><author>Naim, Maryam Y. ; Putt, Mary ; Abend, Nicholas S. ; Mastropietro, Christopher W. ; Frank, Deborah U. ; Chen, Jonathan M. ; Fuller, Stephanie ; Gangemi, James J. ; Gaynor, J. William ; Heinan, Kristin ; Licht, Daniel J. ; Mascio, Christopher E. ; Massey, Shavonne ; Roeser, Mark E. ; Smith, Clyde J. ; Kimmel, Stephen E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-541591bcdfee5675c844aca894534b093dac9b8b7efdc8553621cd76a994e5043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naim, Maryam Y.</creatorcontrib><creatorcontrib>Putt, Mary</creatorcontrib><creatorcontrib>Abend, Nicholas S.</creatorcontrib><creatorcontrib>Mastropietro, Christopher W.</creatorcontrib><creatorcontrib>Frank, Deborah U.</creatorcontrib><creatorcontrib>Chen, Jonathan M.</creatorcontrib><creatorcontrib>Fuller, Stephanie</creatorcontrib><creatorcontrib>Gangemi, James J.</creatorcontrib><creatorcontrib>Gaynor, J. William</creatorcontrib><creatorcontrib>Heinan, Kristin</creatorcontrib><creatorcontrib>Licht, Daniel J.</creatorcontrib><creatorcontrib>Mascio, Christopher E.</creatorcontrib><creatorcontrib>Massey, Shavonne</creatorcontrib><creatorcontrib>Roeser, Mark E.</creatorcontrib><creatorcontrib>Smith, Clyde J.</creatorcontrib><creatorcontrib>Kimmel, Stephen E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Annals of thoracic surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naim, Maryam Y.</au><au>Putt, Mary</au><au>Abend, Nicholas S.</au><au>Mastropietro, Christopher W.</au><au>Frank, Deborah U.</au><au>Chen, Jonathan M.</au><au>Fuller, Stephanie</au><au>Gangemi, James J.</au><au>Gaynor, J. William</au><au>Heinan, Kristin</au><au>Licht, Daniel J.</au><au>Mascio, Christopher E.</au><au>Massey, Shavonne</au><au>Roeser, Mark E.</au><au>Smith, Clyde J.</au><au>Kimmel, Stephen E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of a Seizure Prediction Model in Neonates After Cardiac Surgery</atitle><jtitle>The Annals of thoracic surgery</jtitle><addtitle>Ann Thorac Surg</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>111</volume><issue>6</issue><spage>2041</spage><epage>2048</epage><pages>2041-2048</pages><issn>0003-4975</issn><eissn>1552-6259</eissn><abstract>Electroencephalographic seizures (ESs) after neonatal cardiac surgery are often subclinical and have been associated with poor outcomes. An accurate ES prediction model could allow targeted continuous electroencephalographic monitoring (CEEG) for high-risk neonates. ES prediction models were developed and validated in a multicenter prospective cohort where all postoperative neonates who underwent cardiopulmonary bypass (CPB) also underwent CEEG. ESs occurred in 7.4% of neonates (78 of 1053). Model predictors included gestational age, head circumference, single-ventricle defect, deep hypothermic circulatory arrest duration, cardiac arrest, nitric oxide, extracorporeal membrane oxygenation, and delayed sternal closure. The model performed well in the derivation cohort (c-statistic, 0.77; Hosmer-Lemeshow, P = .56), with a net benefit (NB) over monitoring all and none over a threshold probability of 2% in decision curve analysis (DCA). The model had good calibration in the validation cohort (Hosmer-Lemeshow, P = .60); however, discrimination was poor (c-statistic, 0.61), and in DCA there was no NB of the prediction model between the threshold probabilities of 8% and 18%. By using a cut point that emphasized negative predictive value in the derivation cohort, 32% (236 of 737) of neonates would not undergo CEEG, including 3.5% (2 of 58) of neonates with ESs (negative predictive value, 99%; sensitivity, 97%). In this large prospective cohort, a prediction model of ESs in neonates after CPB had good performance in the derivation cohort, with an NB in DCA. However, performance in the validation cohort was weak, with poor discrimination, poor calibration, and no NB in DCA. These findings support CEEG of all neonates after CPB.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>32738224</pmid><doi>10.1016/j.athoracsur.2020.05.157</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-4975
ispartof The Annals of thoracic surgery, 2021-06, Vol.111 (6), p.2041-2048
issn 0003-4975
1552-6259
language eng
recordid cdi_proquest_miscellaneous_2429774032
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title Development and Validation of a Seizure Prediction Model in Neonates After Cardiac Surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20a%20Seizure%20Prediction%20Model%20in%20Neonates%20After%20Cardiac%20Surgery&rft.jtitle=The%20Annals%20of%20thoracic%20surgery&rft.au=Naim,%20Maryam%20Y.&rft.date=2021-06-01&rft.volume=111&rft.issue=6&rft.spage=2041&rft.epage=2048&rft.pages=2041-2048&rft.issn=0003-4975&rft.eissn=1552-6259&rft_id=info:doi/10.1016/j.athoracsur.2020.05.157&rft_dat=%3Cproquest_cross%3E2429774032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429774032&rft_id=info:pmid/32738224&rft_els_id=S0003497520312145&rfr_iscdi=true