Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4
In this study, we synthesized CeVO 4 /ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spec...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2020-12, Vol.27 (34), p.43262-43273 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43273 |
---|---|
container_issue | 34 |
container_start_page | 43262 |
container_title | Environmental science and pollution research international |
container_volume | 27 |
creator | Muthuvel, Inbasekaran Gowthami, Kaliyamoorthy Thirunarayanan, Ganesamoorthy Krishnakumar, Balu Swaminathan, Meenakshisundaram Siranjeevi, Ravichandran |
description | In this study, we synthesized CeVO
4
/ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) with elemental color mapping (ECM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern, UV-vis diffuse reflection spectroscopy (UV-vis-DRS), BET, and photoluminescence (PL) spectroscopy. The BET surface area of CeVO
4
/ZnO is 10.50 m
2
/g. The photocatalytic activity of CeVO
4
/ZnO nanoheterojunction under solar light was investigated for the degradation of Reactive Orange 4 (RO 4). CeVO
4
/ZnO has been found to be more effective for mineralization of RO 4 than the prepared ZnO at neutral pH. The addition of TBA (
•
OH scavenger) contributes a significant decrease in the photodegradation efficiently of the catalyst. Chemical oxygen demand (COD) measurements confirmed the complete mineralization of RO 4. In addition, it found that the photocatalyst was stable and reusable.
Graphical abstract |
doi_str_mv | 10.1007/s11356-020-10271-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2429771046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574340869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f7c1f91eeba9db61944c1542509fd822b7ce1c67f12ad0a18c8537543883f8c63</originalsourceid><addsrcrecordid>eNqFkUFLXDEUhYMoOGr_gKuAm25Sc_PyXpJlGVpbEAZadWEXIZO5cd7wJrHJmwH99c04QsGFri5cvnO49xxCzoF_Ac7VZQFo2o5xwRlwoYDpAzKBDiRT0phDMuFGSgaNlMfkpJQVr6QRakL-_E6Dy3ToH5YjW-R-i5FO8W4mL-_jjEYX0xJHzGm1iX7sU6QhZTouka77iNkN_bN7WadAf6GryBbpLLv4gFSekaPghoKfXucpuf3-7Wb6g13Prn5Ov14zL4UYWVAeggHEuTOLeQf1Ug-tFC03YaGFmCuP4DsVQLgFd6C9bhvVykbrJmjfNafk8973Mae_GyyjXffF4zC4iGlTrGiVbCTXnfkYlcIoBVzuXC_eoKu0ybE-UikFStQ7RaXEnvI5lZIx2Mfcr11-ssDtrhq7r8bWwO1LNVZXUbMXlQrXqPJ_63dU_wAswY-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471729442</pqid></control><display><type>article</type><title>Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4</title><source>SpringerLink Journals - AutoHoldings</source><creator>Muthuvel, Inbasekaran ; Gowthami, Kaliyamoorthy ; Thirunarayanan, Ganesamoorthy ; Krishnakumar, Balu ; Swaminathan, Meenakshisundaram ; Siranjeevi, Ravichandran</creator><creatorcontrib>Muthuvel, Inbasekaran ; Gowthami, Kaliyamoorthy ; Thirunarayanan, Ganesamoorthy ; Krishnakumar, Balu ; Swaminathan, Meenakshisundaram ; Siranjeevi, Ravichandran</creatorcontrib><description>In this study, we synthesized CeVO
4
/ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) with elemental color mapping (ECM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern, UV-vis diffuse reflection spectroscopy (UV-vis-DRS), BET, and photoluminescence (PL) spectroscopy. The BET surface area of CeVO
4
/ZnO is 10.50 m
2
/g. The photocatalytic activity of CeVO
4
/ZnO nanoheterojunction under solar light was investigated for the degradation of Reactive Orange 4 (RO 4). CeVO
4
/ZnO has been found to be more effective for mineralization of RO 4 than the prepared ZnO at neutral pH. The addition of TBA (
•
OH scavenger) contributes a significant decrease in the photodegradation efficiently of the catalyst. Chemical oxygen demand (COD) measurements confirmed the complete mineralization of RO 4. In addition, it found that the photocatalyst was stable and reusable.
Graphical abstract</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-020-10271-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Catalysts ; Catalytic activity ; Chemical oxygen demand ; CI Reactive Orange 4 ; color ; Diffraction patterns ; Diffuse reflectance spectroscopy ; Earth and Environmental Science ; Ecotoxicology ; Electron diffraction ; energy-dispersive X-ray analysis ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Fourier analysis ; Fourier transform infrared spectroscopy ; Fourier transforms ; High resolution electron microscopy ; Infrared analysis ; Microscopy ; Mineralization ; Oxidation ; Photocatalysis ; Photocatalysts ; Photodegradation ; Photoluminescence ; photolysis ; Photons ; Photovoltaic cells ; reflectance spectroscopy ; Research Article ; Scanning electron microscopy ; solar radiation ; Spectrum analysis ; surface area ; Transmission electron microscopy ; Waste Water Technology ; Water Management ; Water Pollution Control ; X-ray diffraction ; X-ray spectroscopy ; Zinc oxide</subject><ispartof>Environmental science and pollution research international, 2020-12, Vol.27 (34), p.43262-43273</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-f7c1f91eeba9db61944c1542509fd822b7ce1c67f12ad0a18c8537543883f8c63</citedby><cites>FETCH-LOGICAL-c422t-f7c1f91eeba9db61944c1542509fd822b7ce1c67f12ad0a18c8537543883f8c63</cites><orcidid>0000-0002-0957-7688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-020-10271-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-020-10271-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Muthuvel, Inbasekaran</creatorcontrib><creatorcontrib>Gowthami, Kaliyamoorthy</creatorcontrib><creatorcontrib>Thirunarayanan, Ganesamoorthy</creatorcontrib><creatorcontrib>Krishnakumar, Balu</creatorcontrib><creatorcontrib>Swaminathan, Meenakshisundaram</creatorcontrib><creatorcontrib>Siranjeevi, Ravichandran</creatorcontrib><title>Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>In this study, we synthesized CeVO
4
/ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) with elemental color mapping (ECM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern, UV-vis diffuse reflection spectroscopy (UV-vis-DRS), BET, and photoluminescence (PL) spectroscopy. The BET surface area of CeVO
4
/ZnO is 10.50 m
2
/g. The photocatalytic activity of CeVO
4
/ZnO nanoheterojunction under solar light was investigated for the degradation of Reactive Orange 4 (RO 4). CeVO
4
/ZnO has been found to be more effective for mineralization of RO 4 than the prepared ZnO at neutral pH. The addition of TBA (
•
OH scavenger) contributes a significant decrease in the photodegradation efficiently of the catalyst. Chemical oxygen demand (COD) measurements confirmed the complete mineralization of RO 4. In addition, it found that the photocatalyst was stable and reusable.
Graphical abstract</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical oxygen demand</subject><subject>CI Reactive Orange 4</subject><subject>color</subject><subject>Diffraction patterns</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electron diffraction</subject><subject>energy-dispersive X-ray analysis</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Fourier analysis</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>High resolution electron microscopy</subject><subject>Infrared analysis</subject><subject>Microscopy</subject><subject>Mineralization</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photodegradation</subject><subject>Photoluminescence</subject><subject>photolysis</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>reflectance spectroscopy</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>solar radiation</subject><subject>Spectrum analysis</subject><subject>surface area</subject><subject>Transmission electron microscopy</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><subject>Zinc oxide</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFLXDEUhYMoOGr_gKuAm25Sc_PyXpJlGVpbEAZadWEXIZO5cd7wJrHJmwH99c04QsGFri5cvnO49xxCzoF_Ac7VZQFo2o5xwRlwoYDpAzKBDiRT0phDMuFGSgaNlMfkpJQVr6QRakL-_E6Dy3ToH5YjW-R-i5FO8W4mL-_jjEYX0xJHzGm1iX7sU6QhZTouka77iNkN_bN7WadAf6GryBbpLLv4gFSekaPghoKfXucpuf3-7Wb6g13Prn5Ov14zL4UYWVAeggHEuTOLeQf1Ug-tFC03YaGFmCuP4DsVQLgFd6C9bhvVykbrJmjfNafk8973Mae_GyyjXffF4zC4iGlTrGiVbCTXnfkYlcIoBVzuXC_eoKu0ybE-UikFStQ7RaXEnvI5lZIx2Mfcr11-ssDtrhq7r8bWwO1LNVZXUbMXlQrXqPJ_63dU_wAswY-4</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Muthuvel, Inbasekaran</creator><creator>Gowthami, Kaliyamoorthy</creator><creator>Thirunarayanan, Ganesamoorthy</creator><creator>Krishnakumar, Balu</creator><creator>Swaminathan, Meenakshisundaram</creator><creator>Siranjeevi, Ravichandran</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0957-7688</orcidid></search><sort><creationdate>20201201</creationdate><title>Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4</title><author>Muthuvel, Inbasekaran ; Gowthami, Kaliyamoorthy ; Thirunarayanan, Ganesamoorthy ; Krishnakumar, Balu ; Swaminathan, Meenakshisundaram ; Siranjeevi, Ravichandran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f7c1f91eeba9db61944c1542509fd822b7ce1c67f12ad0a18c8537543883f8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical oxygen demand</topic><topic>CI Reactive Orange 4</topic><topic>color</topic><topic>Diffraction patterns</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electron diffraction</topic><topic>energy-dispersive X-ray analysis</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Fourier analysis</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>High resolution electron microscopy</topic><topic>Infrared analysis</topic><topic>Microscopy</topic><topic>Mineralization</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photodegradation</topic><topic>Photoluminescence</topic><topic>photolysis</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>reflectance spectroscopy</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>solar radiation</topic><topic>Spectrum analysis</topic><topic>surface area</topic><topic>Transmission electron microscopy</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthuvel, Inbasekaran</creatorcontrib><creatorcontrib>Gowthami, Kaliyamoorthy</creatorcontrib><creatorcontrib>Thirunarayanan, Ganesamoorthy</creatorcontrib><creatorcontrib>Krishnakumar, Balu</creatorcontrib><creatorcontrib>Swaminathan, Meenakshisundaram</creatorcontrib><creatorcontrib>Siranjeevi, Ravichandran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthuvel, Inbasekaran</au><au>Gowthami, Kaliyamoorthy</au><au>Thirunarayanan, Ganesamoorthy</au><au>Krishnakumar, Balu</au><au>Swaminathan, Meenakshisundaram</au><au>Siranjeevi, Ravichandran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>27</volume><issue>34</issue><spage>43262</spage><epage>43273</epage><pages>43262-43273</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In this study, we synthesized CeVO
4
/ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) with elemental color mapping (ECM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern, UV-vis diffuse reflection spectroscopy (UV-vis-DRS), BET, and photoluminescence (PL) spectroscopy. The BET surface area of CeVO
4
/ZnO is 10.50 m
2
/g. The photocatalytic activity of CeVO
4
/ZnO nanoheterojunction under solar light was investigated for the degradation of Reactive Orange 4 (RO 4). CeVO
4
/ZnO has been found to be more effective for mineralization of RO 4 than the prepared ZnO at neutral pH. The addition of TBA (
•
OH scavenger) contributes a significant decrease in the photodegradation efficiently of the catalyst. Chemical oxygen demand (COD) measurements confirmed the complete mineralization of RO 4. In addition, it found that the photocatalyst was stable and reusable.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-020-10271-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0957-7688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2020-12, Vol.27 (34), p.43262-43273 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2429771046 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Catalysts Catalytic activity Chemical oxygen demand CI Reactive Orange 4 color Diffraction patterns Diffuse reflectance spectroscopy Earth and Environmental Science Ecotoxicology Electron diffraction energy-dispersive X-ray analysis Environment Environmental Chemistry Environmental Health Environmental science Fourier analysis Fourier transform infrared spectroscopy Fourier transforms High resolution electron microscopy Infrared analysis Microscopy Mineralization Oxidation Photocatalysis Photocatalysts Photodegradation Photoluminescence photolysis Photons Photovoltaic cells reflectance spectroscopy Research Article Scanning electron microscopy solar radiation Spectrum analysis surface area Transmission electron microscopy Waste Water Technology Water Management Water Pollution Control X-ray diffraction X-ray spectroscopy Zinc oxide |
title | Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20light-driven%20CeVO4/ZnO%20nanoheterojunction%20for%20the%20mineralization%20of%20Reactive%20Orange%204&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Muthuvel,%20Inbasekaran&rft.date=2020-12-01&rft.volume=27&rft.issue=34&rft.spage=43262&rft.epage=43273&rft.pages=43262-43273&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-020-10271-8&rft_dat=%3Cproquest_cross%3E2574340869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471729442&rft_id=info:pmid/&rfr_iscdi=true |