Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4

In this study, we synthesized CeVO 4 /ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-12, Vol.27 (34), p.43262-43273
Hauptverfasser: Muthuvel, Inbasekaran, Gowthami, Kaliyamoorthy, Thirunarayanan, Ganesamoorthy, Krishnakumar, Balu, Swaminathan, Meenakshisundaram, Siranjeevi, Ravichandran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43273
container_issue 34
container_start_page 43262
container_title Environmental science and pollution research international
container_volume 27
creator Muthuvel, Inbasekaran
Gowthami, Kaliyamoorthy
Thirunarayanan, Ganesamoorthy
Krishnakumar, Balu
Swaminathan, Meenakshisundaram
Siranjeevi, Ravichandran
description In this study, we synthesized CeVO 4 /ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) with elemental color mapping (ECM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern, UV-vis diffuse reflection spectroscopy (UV-vis-DRS), BET, and photoluminescence (PL) spectroscopy. The BET surface area of CeVO 4 /ZnO is 10.50 m 2 /g. The photocatalytic activity of CeVO 4 /ZnO nanoheterojunction under solar light was investigated for the degradation of Reactive Orange 4 (RO 4). CeVO 4 /ZnO has been found to be more effective for mineralization of RO 4 than the prepared ZnO at neutral pH. The addition of TBA ( • OH scavenger) contributes a significant decrease in the photodegradation efficiently of the catalyst. Chemical oxygen demand (COD) measurements confirmed the complete mineralization of RO 4. In addition, it found that the photocatalyst was stable and reusable. Graphical abstract
doi_str_mv 10.1007/s11356-020-10271-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2429771046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574340869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f7c1f91eeba9db61944c1542509fd822b7ce1c67f12ad0a18c8537543883f8c63</originalsourceid><addsrcrecordid>eNqFkUFLXDEUhYMoOGr_gKuAm25Sc_PyXpJlGVpbEAZadWEXIZO5cd7wJrHJmwH99c04QsGFri5cvnO49xxCzoF_Ac7VZQFo2o5xwRlwoYDpAzKBDiRT0phDMuFGSgaNlMfkpJQVr6QRakL-_E6Dy3ToH5YjW-R-i5FO8W4mL-_jjEYX0xJHzGm1iX7sU6QhZTouka77iNkN_bN7WadAf6GryBbpLLv4gFSekaPghoKfXucpuf3-7Wb6g13Prn5Ov14zL4UYWVAeggHEuTOLeQf1Ug-tFC03YaGFmCuP4DsVQLgFd6C9bhvVykbrJmjfNafk8973Mae_GyyjXffF4zC4iGlTrGiVbCTXnfkYlcIoBVzuXC_eoKu0ybE-UikFStQ7RaXEnvI5lZIx2Mfcr11-ssDtrhq7r8bWwO1LNVZXUbMXlQrXqPJ_63dU_wAswY-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471729442</pqid></control><display><type>article</type><title>Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4</title><source>SpringerLink Journals - AutoHoldings</source><creator>Muthuvel, Inbasekaran ; Gowthami, Kaliyamoorthy ; Thirunarayanan, Ganesamoorthy ; Krishnakumar, Balu ; Swaminathan, Meenakshisundaram ; Siranjeevi, Ravichandran</creator><creatorcontrib>Muthuvel, Inbasekaran ; Gowthami, Kaliyamoorthy ; Thirunarayanan, Ganesamoorthy ; Krishnakumar, Balu ; Swaminathan, Meenakshisundaram ; Siranjeevi, Ravichandran</creatorcontrib><description>In this study, we synthesized CeVO 4 /ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) with elemental color mapping (ECM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern, UV-vis diffuse reflection spectroscopy (UV-vis-DRS), BET, and photoluminescence (PL) spectroscopy. The BET surface area of CeVO 4 /ZnO is 10.50 m 2 /g. The photocatalytic activity of CeVO 4 /ZnO nanoheterojunction under solar light was investigated for the degradation of Reactive Orange 4 (RO 4). CeVO 4 /ZnO has been found to be more effective for mineralization of RO 4 than the prepared ZnO at neutral pH. The addition of TBA ( • OH scavenger) contributes a significant decrease in the photodegradation efficiently of the catalyst. Chemical oxygen demand (COD) measurements confirmed the complete mineralization of RO 4. In addition, it found that the photocatalyst was stable and reusable. Graphical abstract</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-020-10271-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Catalysts ; Catalytic activity ; Chemical oxygen demand ; CI Reactive Orange 4 ; color ; Diffraction patterns ; Diffuse reflectance spectroscopy ; Earth and Environmental Science ; Ecotoxicology ; Electron diffraction ; energy-dispersive X-ray analysis ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Fourier analysis ; Fourier transform infrared spectroscopy ; Fourier transforms ; High resolution electron microscopy ; Infrared analysis ; Microscopy ; Mineralization ; Oxidation ; Photocatalysis ; Photocatalysts ; Photodegradation ; Photoluminescence ; photolysis ; Photons ; Photovoltaic cells ; reflectance spectroscopy ; Research Article ; Scanning electron microscopy ; solar radiation ; Spectrum analysis ; surface area ; Transmission electron microscopy ; Waste Water Technology ; Water Management ; Water Pollution Control ; X-ray diffraction ; X-ray spectroscopy ; Zinc oxide</subject><ispartof>Environmental science and pollution research international, 2020-12, Vol.27 (34), p.43262-43273</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-f7c1f91eeba9db61944c1542509fd822b7ce1c67f12ad0a18c8537543883f8c63</citedby><cites>FETCH-LOGICAL-c422t-f7c1f91eeba9db61944c1542509fd822b7ce1c67f12ad0a18c8537543883f8c63</cites><orcidid>0000-0002-0957-7688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-020-10271-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-020-10271-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Muthuvel, Inbasekaran</creatorcontrib><creatorcontrib>Gowthami, Kaliyamoorthy</creatorcontrib><creatorcontrib>Thirunarayanan, Ganesamoorthy</creatorcontrib><creatorcontrib>Krishnakumar, Balu</creatorcontrib><creatorcontrib>Swaminathan, Meenakshisundaram</creatorcontrib><creatorcontrib>Siranjeevi, Ravichandran</creatorcontrib><title>Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>In this study, we synthesized CeVO 4 /ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) with elemental color mapping (ECM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern, UV-vis diffuse reflection spectroscopy (UV-vis-DRS), BET, and photoluminescence (PL) spectroscopy. The BET surface area of CeVO 4 /ZnO is 10.50 m 2 /g. The photocatalytic activity of CeVO 4 /ZnO nanoheterojunction under solar light was investigated for the degradation of Reactive Orange 4 (RO 4). CeVO 4 /ZnO has been found to be more effective for mineralization of RO 4 than the prepared ZnO at neutral pH. The addition of TBA ( • OH scavenger) contributes a significant decrease in the photodegradation efficiently of the catalyst. Chemical oxygen demand (COD) measurements confirmed the complete mineralization of RO 4. In addition, it found that the photocatalyst was stable and reusable. Graphical abstract</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical oxygen demand</subject><subject>CI Reactive Orange 4</subject><subject>color</subject><subject>Diffraction patterns</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electron diffraction</subject><subject>energy-dispersive X-ray analysis</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Fourier analysis</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>High resolution electron microscopy</subject><subject>Infrared analysis</subject><subject>Microscopy</subject><subject>Mineralization</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photodegradation</subject><subject>Photoluminescence</subject><subject>photolysis</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>reflectance spectroscopy</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>solar radiation</subject><subject>Spectrum analysis</subject><subject>surface area</subject><subject>Transmission electron microscopy</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><subject>Zinc oxide</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFLXDEUhYMoOGr_gKuAm25Sc_PyXpJlGVpbEAZadWEXIZO5cd7wJrHJmwH99c04QsGFri5cvnO49xxCzoF_Ac7VZQFo2o5xwRlwoYDpAzKBDiRT0phDMuFGSgaNlMfkpJQVr6QRakL-_E6Dy3ToH5YjW-R-i5FO8W4mL-_jjEYX0xJHzGm1iX7sU6QhZTouka77iNkN_bN7WadAf6GryBbpLLv4gFSekaPghoKfXucpuf3-7Wb6g13Prn5Ov14zL4UYWVAeggHEuTOLeQf1Ug-tFC03YaGFmCuP4DsVQLgFd6C9bhvVykbrJmjfNafk8973Mae_GyyjXffF4zC4iGlTrGiVbCTXnfkYlcIoBVzuXC_eoKu0ybE-UikFStQ7RaXEnvI5lZIx2Mfcr11-ssDtrhq7r8bWwO1LNVZXUbMXlQrXqPJ_63dU_wAswY-4</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Muthuvel, Inbasekaran</creator><creator>Gowthami, Kaliyamoorthy</creator><creator>Thirunarayanan, Ganesamoorthy</creator><creator>Krishnakumar, Balu</creator><creator>Swaminathan, Meenakshisundaram</creator><creator>Siranjeevi, Ravichandran</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0957-7688</orcidid></search><sort><creationdate>20201201</creationdate><title>Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4</title><author>Muthuvel, Inbasekaran ; Gowthami, Kaliyamoorthy ; Thirunarayanan, Ganesamoorthy ; Krishnakumar, Balu ; Swaminathan, Meenakshisundaram ; Siranjeevi, Ravichandran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f7c1f91eeba9db61944c1542509fd822b7ce1c67f12ad0a18c8537543883f8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical oxygen demand</topic><topic>CI Reactive Orange 4</topic><topic>color</topic><topic>Diffraction patterns</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electron diffraction</topic><topic>energy-dispersive X-ray analysis</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Fourier analysis</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>High resolution electron microscopy</topic><topic>Infrared analysis</topic><topic>Microscopy</topic><topic>Mineralization</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photodegradation</topic><topic>Photoluminescence</topic><topic>photolysis</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>reflectance spectroscopy</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>solar radiation</topic><topic>Spectrum analysis</topic><topic>surface area</topic><topic>Transmission electron microscopy</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthuvel, Inbasekaran</creatorcontrib><creatorcontrib>Gowthami, Kaliyamoorthy</creatorcontrib><creatorcontrib>Thirunarayanan, Ganesamoorthy</creatorcontrib><creatorcontrib>Krishnakumar, Balu</creatorcontrib><creatorcontrib>Swaminathan, Meenakshisundaram</creatorcontrib><creatorcontrib>Siranjeevi, Ravichandran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthuvel, Inbasekaran</au><au>Gowthami, Kaliyamoorthy</au><au>Thirunarayanan, Ganesamoorthy</au><au>Krishnakumar, Balu</au><au>Swaminathan, Meenakshisundaram</au><au>Siranjeevi, Ravichandran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>27</volume><issue>34</issue><spage>43262</spage><epage>43273</epage><pages>43262-43273</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In this study, we synthesized CeVO 4 /ZnO nanoheterojunction photocatalyst through hydrothermal-precipitation method. The prepared photocatalyst was characterized by Fourier transform infrared analysis (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) with elemental color mapping (ECM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern, UV-vis diffuse reflection spectroscopy (UV-vis-DRS), BET, and photoluminescence (PL) spectroscopy. The BET surface area of CeVO 4 /ZnO is 10.50 m 2 /g. The photocatalytic activity of CeVO 4 /ZnO nanoheterojunction under solar light was investigated for the degradation of Reactive Orange 4 (RO 4). CeVO 4 /ZnO has been found to be more effective for mineralization of RO 4 than the prepared ZnO at neutral pH. The addition of TBA ( • OH scavenger) contributes a significant decrease in the photodegradation efficiently of the catalyst. Chemical oxygen demand (COD) measurements confirmed the complete mineralization of RO 4. In addition, it found that the photocatalyst was stable and reusable. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-020-10271-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0957-7688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2020-12, Vol.27 (34), p.43262-43273
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2429771046
source SpringerLink Journals - AutoHoldings
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Catalysts
Catalytic activity
Chemical oxygen demand
CI Reactive Orange 4
color
Diffraction patterns
Diffuse reflectance spectroscopy
Earth and Environmental Science
Ecotoxicology
Electron diffraction
energy-dispersive X-ray analysis
Environment
Environmental Chemistry
Environmental Health
Environmental science
Fourier analysis
Fourier transform infrared spectroscopy
Fourier transforms
High resolution electron microscopy
Infrared analysis
Microscopy
Mineralization
Oxidation
Photocatalysis
Photocatalysts
Photodegradation
Photoluminescence
photolysis
Photons
Photovoltaic cells
reflectance spectroscopy
Research Article
Scanning electron microscopy
solar radiation
Spectrum analysis
surface area
Transmission electron microscopy
Waste Water Technology
Water Management
Water Pollution Control
X-ray diffraction
X-ray spectroscopy
Zinc oxide
title Solar light-driven CeVO4/ZnO nanoheterojunction for the mineralization of Reactive Orange 4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20light-driven%20CeVO4/ZnO%20nanoheterojunction%20for%20the%20mineralization%20of%20Reactive%20Orange%204&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Muthuvel,%20Inbasekaran&rft.date=2020-12-01&rft.volume=27&rft.issue=34&rft.spage=43262&rft.epage=43273&rft.pages=43262-43273&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-020-10271-8&rft_dat=%3Cproquest_cross%3E2574340869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471729442&rft_id=info:pmid/&rfr_iscdi=true