Phylogeographic Estimation and Simulation of Global Diffusive Dispersal

The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systematic biology 2021-03, Vol.70 (2), p.340-359
1. Verfasser: Louca, Stilianos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 2
container_start_page 340
container_title Systematic biology
container_volume 70
creator Louca, Stilianos
description The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given time tree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein’s independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package “castor.”
doi_str_mv 10.1093/sysbio/syaa061
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2429057834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27015521</jstor_id><oup_id>10.1093/sysbio/syaa061</oup_id><sourcerecordid>27015521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ec4d62cb05dc33a0630fae6cd27f9bd03dd4ef6d42a0802878f572d97223c90c3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRrFa37pQsdZE6j8xMspRaq1BQUMFdmMyjnTLpxJlE6L83JbVbV-dc-O7h3gPAFYITBAtyH7exsr4XISBDR-AMQc7SnLCv451nJKWI8hE4j3ENIUKMolMwIphjllF4BuZvq63zS-2XQTQrK5NZbG0tWus3idio5N3WnRtGb5K585VwyaM1pov2R_cuNjpE4S7AiREu6su9jsHn0-xj-pwuXucv04dFKglFbaplphiWFaRKEtKfTKARmkmFuSkqBYlSmTZMZVjAHOKc54ZyrAqOMZEFlGQMbofcJvjvTse2rG2U2jmx0b6LJc5wASnPSdajkwGVwccYtCmb0L8WtiWC5a68ciiv3JfXL9zss7uq1uqA_7XVA3cD4Lvm_7DrgV3H1ocDjTlElGJEfgHGPIXK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429057834</pqid></control><display><type>article</type><title>Phylogeographic Estimation and Simulation of Global Diffusive Dispersal</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Louca, Stilianos</creator><contributor>Savolainen, Vincent</contributor><creatorcontrib>Louca, Stilianos ; Savolainen, Vincent</creatorcontrib><description>The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given time tree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein’s independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package “castor.”</description><identifier>ISSN: 1063-5157</identifier><identifier>EISSN: 1076-836X</identifier><identifier>DOI: 10.1093/sysbio/syaa061</identifier><identifier>PMID: 32726450</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>REGULAR ARTICLES</subject><ispartof>Systematic biology, 2021-03, Vol.70 (2), p.340-359</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ec4d62cb05dc33a0630fae6cd27f9bd03dd4ef6d42a0802878f572d97223c90c3</citedby><cites>FETCH-LOGICAL-c351t-ec4d62cb05dc33a0630fae6cd27f9bd03dd4ef6d42a0802878f572d97223c90c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1579,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32726450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Savolainen, Vincent</contributor><creatorcontrib>Louca, Stilianos</creatorcontrib><title>Phylogeographic Estimation and Simulation of Global Diffusive Dispersal</title><title>Systematic biology</title><addtitle>Syst Biol</addtitle><description>The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given time tree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein’s independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package “castor.”</description><subject>REGULAR ARTICLES</subject><issn>1063-5157</issn><issn>1076-836X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRrFa37pQsdZE6j8xMspRaq1BQUMFdmMyjnTLpxJlE6L83JbVbV-dc-O7h3gPAFYITBAtyH7exsr4XISBDR-AMQc7SnLCv451nJKWI8hE4j3ENIUKMolMwIphjllF4BuZvq63zS-2XQTQrK5NZbG0tWus3idio5N3WnRtGb5K585VwyaM1pov2R_cuNjpE4S7AiREu6su9jsHn0-xj-pwuXucv04dFKglFbaplphiWFaRKEtKfTKARmkmFuSkqBYlSmTZMZVjAHOKc54ZyrAqOMZEFlGQMbofcJvjvTse2rG2U2jmx0b6LJc5wASnPSdajkwGVwccYtCmb0L8WtiWC5a68ciiv3JfXL9zss7uq1uqA_7XVA3cD4Lvm_7DrgV3H1ocDjTlElGJEfgHGPIXK</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Louca, Stilianos</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210301</creationdate><title>Phylogeographic Estimation and Simulation of Global Diffusive Dispersal</title><author>Louca, Stilianos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ec4d62cb05dc33a0630fae6cd27f9bd03dd4ef6d42a0802878f572d97223c90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>REGULAR ARTICLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louca, Stilianos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Systematic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louca, Stilianos</au><au>Savolainen, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phylogeographic Estimation and Simulation of Global Diffusive Dispersal</atitle><jtitle>Systematic biology</jtitle><addtitle>Syst Biol</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>70</volume><issue>2</issue><spage>340</spage><epage>359</epage><pages>340-359</pages><issn>1063-5157</issn><eissn>1076-836X</eissn><abstract>The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given time tree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein’s independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package “castor.”</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32726450</pmid><doi>10.1093/sysbio/syaa061</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-5157
ispartof Systematic biology, 2021-03, Vol.70 (2), p.340-359
issn 1063-5157
1076-836X
language eng
recordid cdi_proquest_miscellaneous_2429057834
source Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects REGULAR ARTICLES
title Phylogeographic Estimation and Simulation of Global Diffusive Dispersal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phylogeographic%20Estimation%20and%20Simulation%20of%20Global%20Diffusive%20Dispersal&rft.jtitle=Systematic%20biology&rft.au=Louca,%20Stilianos&rft.date=2021-03-01&rft.volume=70&rft.issue=2&rft.spage=340&rft.epage=359&rft.pages=340-359&rft.issn=1063-5157&rft.eissn=1076-836X&rft_id=info:doi/10.1093/sysbio/syaa061&rft_dat=%3Cjstor_proqu%3E27015521%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429057834&rft_id=info:pmid/32726450&rft_jstor_id=27015521&rft_oup_id=10.1093/sysbio/syaa061&rfr_iscdi=true