Phylogeographic Estimation and Simulation of Global Diffusive Dispersal
The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accura...
Gespeichert in:
Veröffentlicht in: | Systematic biology 2021-03, Vol.70 (2), p.340-359 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 2 |
container_start_page | 340 |
container_title | Systematic biology |
container_volume | 70 |
creator | Louca, Stilianos |
description | The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given time tree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein’s independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package “castor.” |
doi_str_mv | 10.1093/sysbio/syaa061 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2429057834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27015521</jstor_id><oup_id>10.1093/sysbio/syaa061</oup_id><sourcerecordid>27015521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ec4d62cb05dc33a0630fae6cd27f9bd03dd4ef6d42a0802878f572d97223c90c3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRrFa37pQsdZE6j8xMspRaq1BQUMFdmMyjnTLpxJlE6L83JbVbV-dc-O7h3gPAFYITBAtyH7exsr4XISBDR-AMQc7SnLCv451nJKWI8hE4j3ENIUKMolMwIphjllF4BuZvq63zS-2XQTQrK5NZbG0tWus3idio5N3WnRtGb5K585VwyaM1pov2R_cuNjpE4S7AiREu6su9jsHn0-xj-pwuXucv04dFKglFbaplphiWFaRKEtKfTKARmkmFuSkqBYlSmTZMZVjAHOKc54ZyrAqOMZEFlGQMbofcJvjvTse2rG2U2jmx0b6LJc5wASnPSdajkwGVwccYtCmb0L8WtiWC5a68ciiv3JfXL9zss7uq1uqA_7XVA3cD4Lvm_7DrgV3H1ocDjTlElGJEfgHGPIXK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429057834</pqid></control><display><type>article</type><title>Phylogeographic Estimation and Simulation of Global Diffusive Dispersal</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Louca, Stilianos</creator><contributor>Savolainen, Vincent</contributor><creatorcontrib>Louca, Stilianos ; Savolainen, Vincent</creatorcontrib><description>The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given time tree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein’s independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package “castor.”</description><identifier>ISSN: 1063-5157</identifier><identifier>EISSN: 1076-836X</identifier><identifier>DOI: 10.1093/sysbio/syaa061</identifier><identifier>PMID: 32726450</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>REGULAR ARTICLES</subject><ispartof>Systematic biology, 2021-03, Vol.70 (2), p.340-359</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ec4d62cb05dc33a0630fae6cd27f9bd03dd4ef6d42a0802878f572d97223c90c3</citedby><cites>FETCH-LOGICAL-c351t-ec4d62cb05dc33a0630fae6cd27f9bd03dd4ef6d42a0802878f572d97223c90c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1579,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32726450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Savolainen, Vincent</contributor><creatorcontrib>Louca, Stilianos</creatorcontrib><title>Phylogeographic Estimation and Simulation of Global Diffusive Dispersal</title><title>Systematic biology</title><addtitle>Syst Biol</addtitle><description>The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given time tree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein’s independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package “castor.”</description><subject>REGULAR ARTICLES</subject><issn>1063-5157</issn><issn>1076-836X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRrFa37pQsdZE6j8xMspRaq1BQUMFdmMyjnTLpxJlE6L83JbVbV-dc-O7h3gPAFYITBAtyH7exsr4XISBDR-AMQc7SnLCv451nJKWI8hE4j3ENIUKMolMwIphjllF4BuZvq63zS-2XQTQrK5NZbG0tWus3idio5N3WnRtGb5K585VwyaM1pov2R_cuNjpE4S7AiREu6su9jsHn0-xj-pwuXucv04dFKglFbaplphiWFaRKEtKfTKARmkmFuSkqBYlSmTZMZVjAHOKc54ZyrAqOMZEFlGQMbofcJvjvTse2rG2U2jmx0b6LJc5wASnPSdajkwGVwccYtCmb0L8WtiWC5a68ciiv3JfXL9zss7uq1uqA_7XVA3cD4Lvm_7DrgV3H1ocDjTlElGJEfgHGPIXK</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Louca, Stilianos</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210301</creationdate><title>Phylogeographic Estimation and Simulation of Global Diffusive Dispersal</title><author>Louca, Stilianos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ec4d62cb05dc33a0630fae6cd27f9bd03dd4ef6d42a0802878f572d97223c90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>REGULAR ARTICLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louca, Stilianos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Systematic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louca, Stilianos</au><au>Savolainen, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phylogeographic Estimation and Simulation of Global Diffusive Dispersal</atitle><jtitle>Systematic biology</jtitle><addtitle>Syst Biol</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>70</volume><issue>2</issue><spage>340</spage><epage>359</epage><pages>340-359</pages><issn>1063-5157</issn><eissn>1076-836X</eissn><abstract>The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2Dplane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given time tree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein’s independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package “castor.”</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32726450</pmid><doi>10.1093/sysbio/syaa061</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-5157 |
ispartof | Systematic biology, 2021-03, Vol.70 (2), p.340-359 |
issn | 1063-5157 1076-836X |
language | eng |
recordid | cdi_proquest_miscellaneous_2429057834 |
source | Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | REGULAR ARTICLES |
title | Phylogeographic Estimation and Simulation of Global Diffusive Dispersal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phylogeographic%20Estimation%20and%20Simulation%20of%20Global%20Diffusive%20Dispersal&rft.jtitle=Systematic%20biology&rft.au=Louca,%20Stilianos&rft.date=2021-03-01&rft.volume=70&rft.issue=2&rft.spage=340&rft.epage=359&rft.pages=340-359&rft.issn=1063-5157&rft.eissn=1076-836X&rft_id=info:doi/10.1093/sysbio/syaa061&rft_dat=%3Cjstor_proqu%3E27015521%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429057834&rft_id=info:pmid/32726450&rft_jstor_id=27015521&rft_oup_id=10.1093/sysbio/syaa061&rfr_iscdi=true |