Dynamics of Bacteriorhodopsin in the Dark‐Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy
To achieve efficient proton pumping in the light‐driven proton pump bacteriorhodopsin (bR), the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in t...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-11, Vol.59 (47), p.20965-20972 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20972 |
---|---|
container_issue | 47 |
container_start_page | 20965 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Kooijman, Laurens Schuster, Matthias Baumann, Christian Jurt, Simon Löhr, Frank Fürtig, Boris Güntert, Peter Zerbe, Oliver |
description | To achieve efficient proton pumping in the light‐driven proton pump bacteriorhodopsin (bR), the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark‐adapted state, and were found to be mostly well ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10 % residual proton pumping activity, are less well ordered, suggesting a link between side‐chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground‐state bR.
Nuclear magnetic resonance (NMR) spectroscopy was employed to monitor methyl relaxation in the side chains of the light‐driven proton pump bacteriorhodopsin (bR) and its less active M145A mutant. The findings provide a detailed picture of equilibrium dynamics on different time scales for ground‐state bR. |
doi_str_mv | 10.1002/anie.202004393 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2429055731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458744762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5163-15519a8f2d310fc931fb6924b42042809618efba5482c9befe746d90acf88ab3</originalsourceid><addsrcrecordid>eNqF0c1qFTEYBuAgFvujW5cScNPNnOZ3JrM8tlULbQVP90Mm88WmziRjkkHOzkvwGnslppxawU0hkCyevOTLi9BbSlaUEHaivYMVI4wQwVv-Ah1QyWjFm4a_LGfBedUoSffRYUp3xStF6ldon7OG1ZLQAxTOtl5PziQcLP6gTYboQrwNQ5iT87isfAv4TMfv979-rwc9ZxjwJusM2MYw4U0Yl-yCx9eLGUFHfKW_ecjO4K-QgtfeAN7MYHIMyYR5-xrtWT0mePO4H6Gbj-c3p5-ryy-fLk7Xl5WRtOYVlZK2Wlk2cEqsaTm1fd0y0QtGBFOkrakC22spFDNtDxYaUQ8t0cYqpXt-hI53sXMMPxZIuZtcMjCO2kNYUscEa4mUDaeFvv-P3oUl-vK4oqRqhGhqVtRqp0wZJEWw3RzdpOO2o6R7aKJ7aKJ7aqJcePcYu_QTDE_879cX0O7ATzfC9pm4bn19cf4v_A8JKJZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458744762</pqid></control><display><type>article</type><title>Dynamics of Bacteriorhodopsin in the Dark‐Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kooijman, Laurens ; Schuster, Matthias ; Baumann, Christian ; Jurt, Simon ; Löhr, Frank ; Fürtig, Boris ; Güntert, Peter ; Zerbe, Oliver</creator><creatorcontrib>Kooijman, Laurens ; Schuster, Matthias ; Baumann, Christian ; Jurt, Simon ; Löhr, Frank ; Fürtig, Boris ; Güntert, Peter ; Zerbe, Oliver</creatorcontrib><description>To achieve efficient proton pumping in the light‐driven proton pump bacteriorhodopsin (bR), the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark‐adapted state, and were found to be mostly well ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10 % residual proton pumping activity, are less well ordered, suggesting a link between side‐chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground‐state bR.
Nuclear magnetic resonance (NMR) spectroscopy was employed to monitor methyl relaxation in the side chains of the light‐driven proton pump bacteriorhodopsin (bR) and its less active M145A mutant. The findings provide a detailed picture of equilibrium dynamics on different time scales for ground‐state bR.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202004393</identifier><identifier>PMID: 32726501</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aromatic compounds ; Bacteriorhodopsin ; Bacteriorhodopsins - biosynthesis ; Bacteriorhodopsins - chemistry ; Bacteriorhodopsins - genetics ; Chain dynamics ; Dark adaptation ; dynamics ; Group dynamics ; Isomerization ; Lipids ; Magnetic resonance spectroscopy ; membrane proteins ; Models, Molecular ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Proteins ; Protons ; Pumping ; Retina ; retinal isomerization ; rhodopsin ; solution NMR ; Solutions ; Thermodynamics</subject><ispartof>Angewandte Chemie International Edition, 2020-11, Vol.59 (47), p.20965-20972</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5163-15519a8f2d310fc931fb6924b42042809618efba5482c9befe746d90acf88ab3</citedby><cites>FETCH-LOGICAL-c5163-15519a8f2d310fc931fb6924b42042809618efba5482c9befe746d90acf88ab3</cites><orcidid>0000-0003-0475-438X ; 0000-0001-6399-9497 ; 0000-0001-5419-9631 ; 0000-0002-3008-3957 ; 0000-0002-2911-7574 ; 0000-0002-6999-7297 ; 0000-0002-6016-8505 ; 0000-0001-6443-7656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202004393$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202004393$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32726501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kooijman, Laurens</creatorcontrib><creatorcontrib>Schuster, Matthias</creatorcontrib><creatorcontrib>Baumann, Christian</creatorcontrib><creatorcontrib>Jurt, Simon</creatorcontrib><creatorcontrib>Löhr, Frank</creatorcontrib><creatorcontrib>Fürtig, Boris</creatorcontrib><creatorcontrib>Güntert, Peter</creatorcontrib><creatorcontrib>Zerbe, Oliver</creatorcontrib><title>Dynamics of Bacteriorhodopsin in the Dark‐Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>To achieve efficient proton pumping in the light‐driven proton pump bacteriorhodopsin (bR), the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark‐adapted state, and were found to be mostly well ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10 % residual proton pumping activity, are less well ordered, suggesting a link between side‐chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground‐state bR.
Nuclear magnetic resonance (NMR) spectroscopy was employed to monitor methyl relaxation in the side chains of the light‐driven proton pump bacteriorhodopsin (bR) and its less active M145A mutant. The findings provide a detailed picture of equilibrium dynamics on different time scales for ground‐state bR.</description><subject>Aromatic compounds</subject><subject>Bacteriorhodopsin</subject><subject>Bacteriorhodopsins - biosynthesis</subject><subject>Bacteriorhodopsins - chemistry</subject><subject>Bacteriorhodopsins - genetics</subject><subject>Chain dynamics</subject><subject>Dark adaptation</subject><subject>dynamics</subject><subject>Group dynamics</subject><subject>Isomerization</subject><subject>Lipids</subject><subject>Magnetic resonance spectroscopy</subject><subject>membrane proteins</subject><subject>Models, Molecular</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Proteins</subject><subject>Protons</subject><subject>Pumping</subject><subject>Retina</subject><subject>retinal isomerization</subject><subject>rhodopsin</subject><subject>solution NMR</subject><subject>Solutions</subject><subject>Thermodynamics</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1qFTEYBuAgFvujW5cScNPNnOZ3JrM8tlULbQVP90Mm88WmziRjkkHOzkvwGnslppxawU0hkCyevOTLi9BbSlaUEHaivYMVI4wQwVv-Ah1QyWjFm4a_LGfBedUoSffRYUp3xStF6ldon7OG1ZLQAxTOtl5PziQcLP6gTYboQrwNQ5iT87isfAv4TMfv979-rwc9ZxjwJusM2MYw4U0Yl-yCx9eLGUFHfKW_ecjO4K-QgtfeAN7MYHIMyYR5-xrtWT0mePO4H6Gbj-c3p5-ryy-fLk7Xl5WRtOYVlZK2Wlk2cEqsaTm1fd0y0QtGBFOkrakC22spFDNtDxYaUQ8t0cYqpXt-hI53sXMMPxZIuZtcMjCO2kNYUscEa4mUDaeFvv-P3oUl-vK4oqRqhGhqVtRqp0wZJEWw3RzdpOO2o6R7aKJ7aKJ7aqJcePcYu_QTDE_879cX0O7ATzfC9pm4bn19cf4v_A8JKJZA</recordid><startdate>20201116</startdate><enddate>20201116</enddate><creator>Kooijman, Laurens</creator><creator>Schuster, Matthias</creator><creator>Baumann, Christian</creator><creator>Jurt, Simon</creator><creator>Löhr, Frank</creator><creator>Fürtig, Boris</creator><creator>Güntert, Peter</creator><creator>Zerbe, Oliver</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0475-438X</orcidid><orcidid>https://orcid.org/0000-0001-6399-9497</orcidid><orcidid>https://orcid.org/0000-0001-5419-9631</orcidid><orcidid>https://orcid.org/0000-0002-3008-3957</orcidid><orcidid>https://orcid.org/0000-0002-2911-7574</orcidid><orcidid>https://orcid.org/0000-0002-6999-7297</orcidid><orcidid>https://orcid.org/0000-0002-6016-8505</orcidid><orcidid>https://orcid.org/0000-0001-6443-7656</orcidid></search><sort><creationdate>20201116</creationdate><title>Dynamics of Bacteriorhodopsin in the Dark‐Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy</title><author>Kooijman, Laurens ; Schuster, Matthias ; Baumann, Christian ; Jurt, Simon ; Löhr, Frank ; Fürtig, Boris ; Güntert, Peter ; Zerbe, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5163-15519a8f2d310fc931fb6924b42042809618efba5482c9befe746d90acf88ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aromatic compounds</topic><topic>Bacteriorhodopsin</topic><topic>Bacteriorhodopsins - biosynthesis</topic><topic>Bacteriorhodopsins - chemistry</topic><topic>Bacteriorhodopsins - genetics</topic><topic>Chain dynamics</topic><topic>Dark adaptation</topic><topic>dynamics</topic><topic>Group dynamics</topic><topic>Isomerization</topic><topic>Lipids</topic><topic>Magnetic resonance spectroscopy</topic><topic>membrane proteins</topic><topic>Models, Molecular</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Proteins</topic><topic>Protons</topic><topic>Pumping</topic><topic>Retina</topic><topic>retinal isomerization</topic><topic>rhodopsin</topic><topic>solution NMR</topic><topic>Solutions</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kooijman, Laurens</creatorcontrib><creatorcontrib>Schuster, Matthias</creatorcontrib><creatorcontrib>Baumann, Christian</creatorcontrib><creatorcontrib>Jurt, Simon</creatorcontrib><creatorcontrib>Löhr, Frank</creatorcontrib><creatorcontrib>Fürtig, Boris</creatorcontrib><creatorcontrib>Güntert, Peter</creatorcontrib><creatorcontrib>Zerbe, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kooijman, Laurens</au><au>Schuster, Matthias</au><au>Baumann, Christian</au><au>Jurt, Simon</au><au>Löhr, Frank</au><au>Fürtig, Boris</au><au>Güntert, Peter</au><au>Zerbe, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Bacteriorhodopsin in the Dark‐Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-11-16</date><risdate>2020</risdate><volume>59</volume><issue>47</issue><spage>20965</spage><epage>20972</epage><pages>20965-20972</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>To achieve efficient proton pumping in the light‐driven proton pump bacteriorhodopsin (bR), the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark‐adapted state, and were found to be mostly well ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10 % residual proton pumping activity, are less well ordered, suggesting a link between side‐chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground‐state bR.
Nuclear magnetic resonance (NMR) spectroscopy was employed to monitor methyl relaxation in the side chains of the light‐driven proton pump bacteriorhodopsin (bR) and its less active M145A mutant. The findings provide a detailed picture of equilibrium dynamics on different time scales for ground‐state bR.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32726501</pmid><doi>10.1002/anie.202004393</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0475-438X</orcidid><orcidid>https://orcid.org/0000-0001-6399-9497</orcidid><orcidid>https://orcid.org/0000-0001-5419-9631</orcidid><orcidid>https://orcid.org/0000-0002-3008-3957</orcidid><orcidid>https://orcid.org/0000-0002-2911-7574</orcidid><orcidid>https://orcid.org/0000-0002-6999-7297</orcidid><orcidid>https://orcid.org/0000-0002-6016-8505</orcidid><orcidid>https://orcid.org/0000-0001-6443-7656</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-11, Vol.59 (47), p.20965-20972 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2429055731 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Aromatic compounds Bacteriorhodopsin Bacteriorhodopsins - biosynthesis Bacteriorhodopsins - chemistry Bacteriorhodopsins - genetics Chain dynamics Dark adaptation dynamics Group dynamics Isomerization Lipids Magnetic resonance spectroscopy membrane proteins Models, Molecular NMR NMR spectroscopy Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Proteins Protons Pumping Retina retinal isomerization rhodopsin solution NMR Solutions Thermodynamics |
title | Dynamics of Bacteriorhodopsin in the Dark‐Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Bacteriorhodopsin%20in%20the%20Dark%E2%80%90Adapted%20State%20from%20Solution%20Nuclear%20Magnetic%20Resonance%20Spectroscopy&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Kooijman,%20Laurens&rft.date=2020-11-16&rft.volume=59&rft.issue=47&rft.spage=20965&rft.epage=20972&rft.pages=20965-20972&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202004393&rft_dat=%3Cproquest_cross%3E2458744762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458744762&rft_id=info:pmid/32726501&rfr_iscdi=true |