Effect of Glycyrrhizic Acid and Arabinogalactan on the Membrane Potential of Rat Thymocytes Studied by Potential-Sensitive Fluorescent Probe

The effect of the natural saponin glycyrrhizic acid (GA) and polysaccharide arabinogalactan (AG) on the transmembrane potential of rat thymocytes was investigated using the potential-sensitive fluorescent probe 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM). Incubation of cells with GA in micell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of membrane biology 2020-08, Vol.253 (4), p.343-356
Hauptverfasser: Glazachev, Yuri I., Schlotgauer, Anna A., Timoshnikov, Viktor A., Kononova, Polina A., Selyutina, Olga Yu, Shelepova, Ekaterina A., Zelikman, Maxim V., Khvostov, Mikhail V., Polyakov, Nikolay E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 4
container_start_page 343
container_title The Journal of membrane biology
container_volume 253
creator Glazachev, Yuri I.
Schlotgauer, Anna A.
Timoshnikov, Viktor A.
Kononova, Polina A.
Selyutina, Olga Yu
Shelepova, Ekaterina A.
Zelikman, Maxim V.
Khvostov, Mikhail V.
Polyakov, Nikolay E.
description The effect of the natural saponin glycyrrhizic acid (GA) and polysaccharide arabinogalactan (AG) on the transmembrane potential of rat thymocytes was investigated using the potential-sensitive fluorescent probe 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM). Incubation of cells with GA in micellar form resulted in a decrease of the amplitude of observed fluorescence kinetics that points out to a decrease of the transmembrane potential. The proposed mechanism is an increase of membrane ion permeability (passive ion transport) of the plasma cell membrane due to GA incorporation. The incorporation of GA molecules into the cell membrane is extremely sensitive to the degree of GA dissociation. The neutral form of glycyrrhizic acid enters the lipid bilayer in contrast to the deprotonated anionic form. The incubation of rat thymocytes with anionic form of GA, namely with its disodium salt, has no effect on the fluorescence kinetics. The possible reasons of this phenomenon are discussed in the light of the nuclear magnetic resonance (NMR) and molecular dynamics (MD) data. The treatment of thymocytes with AG affects only the initial rate of the probe incorporation. The proposed mechanism is that AG covers the surface of the cell membrane and forms a barrier for the probe. Additionally, our experiments demonstrated that both polysaccharide AG and GA in the neutral form (but not Na 2 GA) effectively capture the cationic probe in an aqueous solution and then deliver it to the cell membrane. Graphic Abstract
doi_str_mv 10.1007/s00232-020-00132-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2428418444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430528409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c434b5e44c5818c413cc53f8702967b40a8f0abce086f9558b17923bca0ceb7d3</originalsourceid><addsrcrecordid>eNp9kc1qHDEQhEVIIBs7L5CTIJdcxmn9zM7scTG2E3CIsZ2zkHp6vDKzkiNpDJNnyENbzgYMOeTUBf1V0U0x9kHAiQDoPmcAqWQDEhoAUZV6xVZCVyG01K_Zqu5lI9dKvGXvcr6vUNet9Yr9PhtHwsLjyC-mBZeUdv6XR75FP3AbBr5N1vkQ7-xksdjAY-BlR_wb7V2ygfhVLBSKt9NzxLUt_Ha37CMuhTK_KfPgaeBuecGaGwrZF_9I_HyaY6KMdcGvUnR0zN6Mdsr0_u88Yj_Oz25PvzSX3y--nm4vG1StLA1qpV1LWmPbix61UIitGvsO5GbdOQ22H8E6JOjX46Zteye6jVQOLSC5blBH7NMh9yHFnzPlYva-njFN9aE4ZyO17LXotdYV_fgPeh_nFOp1lVLQVhA2lZIHClPMOdFoHpLf27QYAea5IHMoyNSCzJ-CjKomdTDlCoc7Si_R_3E9AdfmlEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430528409</pqid></control><display><type>article</type><title>Effect of Glycyrrhizic Acid and Arabinogalactan on the Membrane Potential of Rat Thymocytes Studied by Potential-Sensitive Fluorescent Probe</title><source>SpringerLink Journals - AutoHoldings</source><creator>Glazachev, Yuri I. ; Schlotgauer, Anna A. ; Timoshnikov, Viktor A. ; Kononova, Polina A. ; Selyutina, Olga Yu ; Shelepova, Ekaterina A. ; Zelikman, Maxim V. ; Khvostov, Mikhail V. ; Polyakov, Nikolay E.</creator><creatorcontrib>Glazachev, Yuri I. ; Schlotgauer, Anna A. ; Timoshnikov, Viktor A. ; Kononova, Polina A. ; Selyutina, Olga Yu ; Shelepova, Ekaterina A. ; Zelikman, Maxim V. ; Khvostov, Mikhail V. ; Polyakov, Nikolay E.</creatorcontrib><description>The effect of the natural saponin glycyrrhizic acid (GA) and polysaccharide arabinogalactan (AG) on the transmembrane potential of rat thymocytes was investigated using the potential-sensitive fluorescent probe 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM). Incubation of cells with GA in micellar form resulted in a decrease of the amplitude of observed fluorescence kinetics that points out to a decrease of the transmembrane potential. The proposed mechanism is an increase of membrane ion permeability (passive ion transport) of the plasma cell membrane due to GA incorporation. The incorporation of GA molecules into the cell membrane is extremely sensitive to the degree of GA dissociation. The neutral form of glycyrrhizic acid enters the lipid bilayer in contrast to the deprotonated anionic form. The incubation of rat thymocytes with anionic form of GA, namely with its disodium salt, has no effect on the fluorescence kinetics. The possible reasons of this phenomenon are discussed in the light of the nuclear magnetic resonance (NMR) and molecular dynamics (MD) data. The treatment of thymocytes with AG affects only the initial rate of the probe incorporation. The proposed mechanism is that AG covers the surface of the cell membrane and forms a barrier for the probe. Additionally, our experiments demonstrated that both polysaccharide AG and GA in the neutral form (but not Na 2 GA) effectively capture the cationic probe in an aqueous solution and then deliver it to the cell membrane. Graphic Abstract</description><identifier>ISSN: 0022-2631</identifier><identifier>EISSN: 1432-1424</identifier><identifier>DOI: 10.1007/s00232-020-00132-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aqueous solutions ; Arabinogalactan ; Biochemistry ; Biomedical and Life Sciences ; Cell membranes ; Cell surface ; Fluorescent indicators ; Human Physiology ; Incorporation ; Ion transport ; Kinetics ; Life Sciences ; Lipid bilayers ; Lipids ; Magnetic permeability ; Membrane permeability ; Membrane potential ; Molecular dynamics ; NMR ; Nuclear magnetic resonance ; Polysaccharides ; Saponins ; Thymocytes</subject><ispartof>The Journal of membrane biology, 2020-08, Vol.253 (4), p.343-356</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c434b5e44c5818c413cc53f8702967b40a8f0abce086f9558b17923bca0ceb7d3</citedby><cites>FETCH-LOGICAL-c352t-c434b5e44c5818c413cc53f8702967b40a8f0abce086f9558b17923bca0ceb7d3</cites><orcidid>0000-0003-3686-7274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00232-020-00132-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00232-020-00132-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Glazachev, Yuri I.</creatorcontrib><creatorcontrib>Schlotgauer, Anna A.</creatorcontrib><creatorcontrib>Timoshnikov, Viktor A.</creatorcontrib><creatorcontrib>Kononova, Polina A.</creatorcontrib><creatorcontrib>Selyutina, Olga Yu</creatorcontrib><creatorcontrib>Shelepova, Ekaterina A.</creatorcontrib><creatorcontrib>Zelikman, Maxim V.</creatorcontrib><creatorcontrib>Khvostov, Mikhail V.</creatorcontrib><creatorcontrib>Polyakov, Nikolay E.</creatorcontrib><title>Effect of Glycyrrhizic Acid and Arabinogalactan on the Membrane Potential of Rat Thymocytes Studied by Potential-Sensitive Fluorescent Probe</title><title>The Journal of membrane biology</title><addtitle>J Membrane Biol</addtitle><description>The effect of the natural saponin glycyrrhizic acid (GA) and polysaccharide arabinogalactan (AG) on the transmembrane potential of rat thymocytes was investigated using the potential-sensitive fluorescent probe 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM). Incubation of cells with GA in micellar form resulted in a decrease of the amplitude of observed fluorescence kinetics that points out to a decrease of the transmembrane potential. The proposed mechanism is an increase of membrane ion permeability (passive ion transport) of the plasma cell membrane due to GA incorporation. The incorporation of GA molecules into the cell membrane is extremely sensitive to the degree of GA dissociation. The neutral form of glycyrrhizic acid enters the lipid bilayer in contrast to the deprotonated anionic form. The incubation of rat thymocytes with anionic form of GA, namely with its disodium salt, has no effect on the fluorescence kinetics. The possible reasons of this phenomenon are discussed in the light of the nuclear magnetic resonance (NMR) and molecular dynamics (MD) data. The treatment of thymocytes with AG affects only the initial rate of the probe incorporation. The proposed mechanism is that AG covers the surface of the cell membrane and forms a barrier for the probe. Additionally, our experiments demonstrated that both polysaccharide AG and GA in the neutral form (but not Na 2 GA) effectively capture the cationic probe in an aqueous solution and then deliver it to the cell membrane. Graphic Abstract</description><subject>Aqueous solutions</subject><subject>Arabinogalactan</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell membranes</subject><subject>Cell surface</subject><subject>Fluorescent indicators</subject><subject>Human Physiology</subject><subject>Incorporation</subject><subject>Ion transport</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Lipid bilayers</subject><subject>Lipids</subject><subject>Magnetic permeability</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polysaccharides</subject><subject>Saponins</subject><subject>Thymocytes</subject><issn>0022-2631</issn><issn>1432-1424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1qHDEQhEVIIBs7L5CTIJdcxmn9zM7scTG2E3CIsZ2zkHp6vDKzkiNpDJNnyENbzgYMOeTUBf1V0U0x9kHAiQDoPmcAqWQDEhoAUZV6xVZCVyG01K_Zqu5lI9dKvGXvcr6vUNet9Yr9PhtHwsLjyC-mBZeUdv6XR75FP3AbBr5N1vkQ7-xksdjAY-BlR_wb7V2ygfhVLBSKt9NzxLUt_Ha37CMuhTK_KfPgaeBuecGaGwrZF_9I_HyaY6KMdcGvUnR0zN6Mdsr0_u88Yj_Oz25PvzSX3y--nm4vG1StLA1qpV1LWmPbix61UIitGvsO5GbdOQ22H8E6JOjX46Zteye6jVQOLSC5blBH7NMh9yHFnzPlYva-njFN9aE4ZyO17LXotdYV_fgPeh_nFOp1lVLQVhA2lZIHClPMOdFoHpLf27QYAea5IHMoyNSCzJ-CjKomdTDlCoc7Si_R_3E9AdfmlEc</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Glazachev, Yuri I.</creator><creator>Schlotgauer, Anna A.</creator><creator>Timoshnikov, Viktor A.</creator><creator>Kononova, Polina A.</creator><creator>Selyutina, Olga Yu</creator><creator>Shelepova, Ekaterina A.</creator><creator>Zelikman, Maxim V.</creator><creator>Khvostov, Mikhail V.</creator><creator>Polyakov, Nikolay E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3686-7274</orcidid></search><sort><creationdate>20200801</creationdate><title>Effect of Glycyrrhizic Acid and Arabinogalactan on the Membrane Potential of Rat Thymocytes Studied by Potential-Sensitive Fluorescent Probe</title><author>Glazachev, Yuri I. ; Schlotgauer, Anna A. ; Timoshnikov, Viktor A. ; Kononova, Polina A. ; Selyutina, Olga Yu ; Shelepova, Ekaterina A. ; Zelikman, Maxim V. ; Khvostov, Mikhail V. ; Polyakov, Nikolay E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c434b5e44c5818c413cc53f8702967b40a8f0abce086f9558b17923bca0ceb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Arabinogalactan</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell membranes</topic><topic>Cell surface</topic><topic>Fluorescent indicators</topic><topic>Human Physiology</topic><topic>Incorporation</topic><topic>Ion transport</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Lipid bilayers</topic><topic>Lipids</topic><topic>Magnetic permeability</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polysaccharides</topic><topic>Saponins</topic><topic>Thymocytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glazachev, Yuri I.</creatorcontrib><creatorcontrib>Schlotgauer, Anna A.</creatorcontrib><creatorcontrib>Timoshnikov, Viktor A.</creatorcontrib><creatorcontrib>Kononova, Polina A.</creatorcontrib><creatorcontrib>Selyutina, Olga Yu</creatorcontrib><creatorcontrib>Shelepova, Ekaterina A.</creatorcontrib><creatorcontrib>Zelikman, Maxim V.</creatorcontrib><creatorcontrib>Khvostov, Mikhail V.</creatorcontrib><creatorcontrib>Polyakov, Nikolay E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of membrane biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glazachev, Yuri I.</au><au>Schlotgauer, Anna A.</au><au>Timoshnikov, Viktor A.</au><au>Kononova, Polina A.</au><au>Selyutina, Olga Yu</au><au>Shelepova, Ekaterina A.</au><au>Zelikman, Maxim V.</au><au>Khvostov, Mikhail V.</au><au>Polyakov, Nikolay E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Glycyrrhizic Acid and Arabinogalactan on the Membrane Potential of Rat Thymocytes Studied by Potential-Sensitive Fluorescent Probe</atitle><jtitle>The Journal of membrane biology</jtitle><stitle>J Membrane Biol</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>253</volume><issue>4</issue><spage>343</spage><epage>356</epage><pages>343-356</pages><issn>0022-2631</issn><eissn>1432-1424</eissn><abstract>The effect of the natural saponin glycyrrhizic acid (GA) and polysaccharide arabinogalactan (AG) on the transmembrane potential of rat thymocytes was investigated using the potential-sensitive fluorescent probe 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM). Incubation of cells with GA in micellar form resulted in a decrease of the amplitude of observed fluorescence kinetics that points out to a decrease of the transmembrane potential. The proposed mechanism is an increase of membrane ion permeability (passive ion transport) of the plasma cell membrane due to GA incorporation. The incorporation of GA molecules into the cell membrane is extremely sensitive to the degree of GA dissociation. The neutral form of glycyrrhizic acid enters the lipid bilayer in contrast to the deprotonated anionic form. The incubation of rat thymocytes with anionic form of GA, namely with its disodium salt, has no effect on the fluorescence kinetics. The possible reasons of this phenomenon are discussed in the light of the nuclear magnetic resonance (NMR) and molecular dynamics (MD) data. The treatment of thymocytes with AG affects only the initial rate of the probe incorporation. The proposed mechanism is that AG covers the surface of the cell membrane and forms a barrier for the probe. Additionally, our experiments demonstrated that both polysaccharide AG and GA in the neutral form (but not Na 2 GA) effectively capture the cationic probe in an aqueous solution and then deliver it to the cell membrane. Graphic Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00232-020-00132-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3686-7274</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2631
ispartof The Journal of membrane biology, 2020-08, Vol.253 (4), p.343-356
issn 0022-2631
1432-1424
language eng
recordid cdi_proquest_miscellaneous_2428418444
source SpringerLink Journals - AutoHoldings
subjects Aqueous solutions
Arabinogalactan
Biochemistry
Biomedical and Life Sciences
Cell membranes
Cell surface
Fluorescent indicators
Human Physiology
Incorporation
Ion transport
Kinetics
Life Sciences
Lipid bilayers
Lipids
Magnetic permeability
Membrane permeability
Membrane potential
Molecular dynamics
NMR
Nuclear magnetic resonance
Polysaccharides
Saponins
Thymocytes
title Effect of Glycyrrhizic Acid and Arabinogalactan on the Membrane Potential of Rat Thymocytes Studied by Potential-Sensitive Fluorescent Probe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Glycyrrhizic%20Acid%20and%20Arabinogalactan%20on%20the%20Membrane%20Potential%20of%20Rat%20Thymocytes%20Studied%20by%20Potential-Sensitive%20Fluorescent%20Probe&rft.jtitle=The%20Journal%20of%20membrane%20biology&rft.au=Glazachev,%20Yuri%20I.&rft.date=2020-08-01&rft.volume=253&rft.issue=4&rft.spage=343&rft.epage=356&rft.pages=343-356&rft.issn=0022-2631&rft.eissn=1432-1424&rft_id=info:doi/10.1007/s00232-020-00132-3&rft_dat=%3Cproquest_cross%3E2430528409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430528409&rft_id=info:pmid/&rfr_iscdi=true