A dynamic mouse peptidome landscape reveals probiotic modulation of the gut-brain axis
Certain probiotics have beneficial effects on the function of the central nervous system through modulation of the gut-brain axis. Here, we describe a dynamic landscape of the peptidome across multiple brain regions, modulated by oral administration of different probiotic species over various times....
Gespeichert in:
Veröffentlicht in: | Science signaling 2020-07, Vol.13 (642) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Certain probiotics have beneficial effects on the function of the central nervous system through modulation of the gut-brain axis. Here, we describe a dynamic landscape of the peptidome across multiple brain regions, modulated by oral administration of different probiotic species over various times. The spatiotemporal and strain-specific changes of the brain peptidome correlated with the composition of the gut microbiome. The hippocampus exhibited the most sensitive response to probiotic treatment. The administration of heat-killed probiotics altered the hippocampus peptidome but did not substantially change the gut microbiome. We developed a literature-mining algorithm to link the neuropeptides altered by probiotics with potential functional roles. We validated the probiotic-regulated role of corticotropin-releasing hormone by monitoring the hypothalamic-pituitary-adrenal axis, the prenatal stress-induced hyperactivity of which was attenuated by probiotics treatment. Our findings provide evidence for modulation of the brain peptidome by probiotics and provide a resource for further studies of the gut-brain axis and probiotic therapies. |
---|---|
ISSN: | 1945-0877 1937-9145 |
DOI: | 10.1126/scisignal.abb0443 |