Assessment of Quality Outcomes and Learning Curve for Robot-Assisted Minimally Invasive McKeown Esophagectomy

Background This study aimed to identify the results of the quality assessment and the learning curve of robot-assisted minimally invasive McKeown esophagectomy (RAMIE-MK). Methods The study retrospectively reviewed the data of 400 consecutive patients with esophageal cancer who underwent RAMIE-MK by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of surgical oncology 2021-02, Vol.28 (2), p.676-684
Hauptverfasser: Yang, Yang, Li, Bin, Hua, Rong, Zhang, Xiaobin, Jiang, Haoyao, Sun, Yifeng, Veronesi, Giulia, Ricciardi, Sara, Casiraghi, Monica, Durand, Marion, Caso, Raul, Sarkaria, Inderpal S., Li, ZhiGang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 2
container_start_page 676
container_title Annals of surgical oncology
container_volume 28
creator Yang, Yang
Li, Bin
Hua, Rong
Zhang, Xiaobin
Jiang, Haoyao
Sun, Yifeng
Veronesi, Giulia
Ricciardi, Sara
Casiraghi, Monica
Durand, Marion
Caso, Raul
Sarkaria, Inderpal S.
Li, ZhiGang
description Background This study aimed to identify the results of the quality assessment and the learning curve of robot-assisted minimally invasive McKeown esophagectomy (RAMIE-MK). Methods The study retrospectively reviewed the data of 400 consecutive patients with esophageal cancer who underwent RAMIE-MK by a single surgeon from November 2015 to March 2019. Cumulative summation analysis of the learning curve was performed. The patients were divided into decile cohorts of 40 cases to minimize demographic deviations and to maximize the power of detecting statistically significant changes in performance. Results The 90-day mortality rate for all the patients was 0.5% (2 cases). The authors’ experience was divided into the ascending phase (40 cases), the plateau phase (175 cases), and the descending phase (185 cases). After 40 cases, significant improvements in operative time (328 vs. 251 min; P  = 0.019), estimated blood loss (350 vs. 200 ml; P  = 0.031), and conversion rates (12.5% vs. 2.5%; P  
doi_str_mv 10.1245/s10434-020-08857-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2428063529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476734716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f93a2a5171cdc60ae0e0fdb90fd300f25207fd33f6d31199c1d93b8113fed3853</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERT_gD3BAlrhwCR1_xEmO1arQiq0qEJwtrzNeUiX24kmK9t9j2AJSD73YI_t5X8_4Zey1gPdC6vqcBGilK5BQQdvWTQXP2Imoy5E2rXheajBt1UlTH7NTojsA0SioX7BjJRsJoM0Jmy6IkGjCOPMU-OfFjcO857fL7NOExF3s-RpdjkPc8tWS75GHlPmXtElzVbQDzdjzmyEOkxvHPb-O946GQt34T5h-Rn5JaffdbdHPadq_ZEfBjYSvHvYz9u3D5dfVVbW-_Xi9ulhXXmsxV6FTTrpaNML33oBDQAj9piuLAgiyltCUUgXTKyG6zou-U5tWCBWwV22tzti7g-8upx8L0myngTyOo4uYFrJSyxaMqmVX0LeP0Lu05Fi6K1RjGqUbYQolD5TPiShjsLtcJs57K8D-DsMewrAlDPsnDAtF9ObBetlM2P-T_P39AqgDQOUqbjH_f_sJ21-dP5Us</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476734716</pqid></control><display><type>article</type><title>Assessment of Quality Outcomes and Learning Curve for Robot-Assisted Minimally Invasive McKeown Esophagectomy</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Yang ; Li, Bin ; Hua, Rong ; Zhang, Xiaobin ; Jiang, Haoyao ; Sun, Yifeng ; Veronesi, Giulia ; Ricciardi, Sara ; Casiraghi, Monica ; Durand, Marion ; Caso, Raul ; Sarkaria, Inderpal S. ; Li, ZhiGang</creator><creatorcontrib>Yang, Yang ; Li, Bin ; Hua, Rong ; Zhang, Xiaobin ; Jiang, Haoyao ; Sun, Yifeng ; Veronesi, Giulia ; Ricciardi, Sara ; Casiraghi, Monica ; Durand, Marion ; Caso, Raul ; Sarkaria, Inderpal S. ; Li, ZhiGang ; Written on behalf of the AME Thoracic Surgery Collaborative Group ; Written on behalf of the AME Thoracic Surgery Collaborative Group</creatorcontrib><description>Background This study aimed to identify the results of the quality assessment and the learning curve of robot-assisted minimally invasive McKeown esophagectomy (RAMIE-MK). Methods The study retrospectively reviewed the data of 400 consecutive patients with esophageal cancer who underwent RAMIE-MK by a single surgeon from November 2015 to March 2019. Cumulative summation analysis of the learning curve was performed. The patients were divided into decile cohorts of 40 cases to minimize demographic deviations and to maximize the power of detecting statistically significant changes in performance. Results The 90-day mortality rate for all the patients was 0.5% (2 cases). The authors’ experience was divided into the ascending phase (40 cases), the plateau phase (175 cases), and the descending phase (185 cases). After 40 cases, significant improvements in operative time (328 vs. 251 min; P  = 0.019), estimated blood loss (350 vs. 200 ml; P  = 0.031), and conversion rates (12.5% vs. 2.5%; P  &lt; 0.001) were observed. After 80 cases, a decrease in the rates of anastomotic leakage (22.5% vs. 8.1%; P  = 0.001) and vocal cord palsy (31.3% vs. 18.4%; P  = 0.024) was observed. The number of harvested lymph nodes increased after 40 cases (13 vs. 23; P  &lt; 0.001), especially for lymph nodes along the recurrent laryngeal nerve (3.0 vs. 6.0; P  &lt; 0.001). Conclusions The learning phase of RAMIE-MK consists of 40 cases, and quality outcomes can be improved after 80 procedures. Several turning points related to the optimization of surgical outcomes can be used as benchmarks for surgeons performing RAMIE-MK.</description><identifier>ISSN: 1068-9265</identifier><identifier>EISSN: 1534-4681</identifier><identifier>DOI: 10.1245/s10434-020-08857-0</identifier><identifier>PMID: 32720046</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Anastomotic leak ; Esophageal cancer ; Esophageal Neoplasms - surgery ; Esophagectomy ; Esophagus ; Gastrointestinal surgery ; Humans ; Learning ; Learning Curve ; Lymph nodes ; Lymphatic system ; Medicine ; Medicine &amp; Public Health ; Oncology ; Paralysis ; Quality control ; Retrospective Studies ; Robotic surgery ; Robotic Surgical Procedures ; Robotics ; Statistical analysis ; Surgery ; Surgical Oncology ; Thoracic Oncology</subject><ispartof>Annals of surgical oncology, 2021-02, Vol.28 (2), p.676-684</ispartof><rights>Society of Surgical Oncology 2020</rights><rights>Society of Surgical Oncology 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f93a2a5171cdc60ae0e0fdb90fd300f25207fd33f6d31199c1d93b8113fed3853</citedby><cites>FETCH-LOGICAL-c441t-f93a2a5171cdc60ae0e0fdb90fd300f25207fd33f6d31199c1d93b8113fed3853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1245/s10434-020-08857-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1245/s10434-020-08857-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32720046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Hua, Rong</creatorcontrib><creatorcontrib>Zhang, Xiaobin</creatorcontrib><creatorcontrib>Jiang, Haoyao</creatorcontrib><creatorcontrib>Sun, Yifeng</creatorcontrib><creatorcontrib>Veronesi, Giulia</creatorcontrib><creatorcontrib>Ricciardi, Sara</creatorcontrib><creatorcontrib>Casiraghi, Monica</creatorcontrib><creatorcontrib>Durand, Marion</creatorcontrib><creatorcontrib>Caso, Raul</creatorcontrib><creatorcontrib>Sarkaria, Inderpal S.</creatorcontrib><creatorcontrib>Li, ZhiGang</creatorcontrib><creatorcontrib>Written on behalf of the AME Thoracic Surgery Collaborative Group</creatorcontrib><creatorcontrib>Written on behalf of the AME Thoracic Surgery Collaborative Group</creatorcontrib><title>Assessment of Quality Outcomes and Learning Curve for Robot-Assisted Minimally Invasive McKeown Esophagectomy</title><title>Annals of surgical oncology</title><addtitle>Ann Surg Oncol</addtitle><addtitle>Ann Surg Oncol</addtitle><description>Background This study aimed to identify the results of the quality assessment and the learning curve of robot-assisted minimally invasive McKeown esophagectomy (RAMIE-MK). Methods The study retrospectively reviewed the data of 400 consecutive patients with esophageal cancer who underwent RAMIE-MK by a single surgeon from November 2015 to March 2019. Cumulative summation analysis of the learning curve was performed. The patients were divided into decile cohorts of 40 cases to minimize demographic deviations and to maximize the power of detecting statistically significant changes in performance. Results The 90-day mortality rate for all the patients was 0.5% (2 cases). The authors’ experience was divided into the ascending phase (40 cases), the plateau phase (175 cases), and the descending phase (185 cases). After 40 cases, significant improvements in operative time (328 vs. 251 min; P  = 0.019), estimated blood loss (350 vs. 200 ml; P  = 0.031), and conversion rates (12.5% vs. 2.5%; P  &lt; 0.001) were observed. After 80 cases, a decrease in the rates of anastomotic leakage (22.5% vs. 8.1%; P  = 0.001) and vocal cord palsy (31.3% vs. 18.4%; P  = 0.024) was observed. The number of harvested lymph nodes increased after 40 cases (13 vs. 23; P  &lt; 0.001), especially for lymph nodes along the recurrent laryngeal nerve (3.0 vs. 6.0; P  &lt; 0.001). Conclusions The learning phase of RAMIE-MK consists of 40 cases, and quality outcomes can be improved after 80 procedures. Several turning points related to the optimization of surgical outcomes can be used as benchmarks for surgeons performing RAMIE-MK.</description><subject>Anastomotic leak</subject><subject>Esophageal cancer</subject><subject>Esophageal Neoplasms - surgery</subject><subject>Esophagectomy</subject><subject>Esophagus</subject><subject>Gastrointestinal surgery</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning Curve</subject><subject>Lymph nodes</subject><subject>Lymphatic system</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Oncology</subject><subject>Paralysis</subject><subject>Quality control</subject><subject>Retrospective Studies</subject><subject>Robotic surgery</subject><subject>Robotic Surgical Procedures</subject><subject>Robotics</subject><subject>Statistical analysis</subject><subject>Surgery</subject><subject>Surgical Oncology</subject><subject>Thoracic Oncology</subject><issn>1068-9265</issn><issn>1534-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kU1v1DAQhi1ERT_gD3BAlrhwCR1_xEmO1arQiq0qEJwtrzNeUiX24kmK9t9j2AJSD73YI_t5X8_4Zey1gPdC6vqcBGilK5BQQdvWTQXP2Imoy5E2rXheajBt1UlTH7NTojsA0SioX7BjJRsJoM0Jmy6IkGjCOPMU-OfFjcO857fL7NOExF3s-RpdjkPc8tWS75GHlPmXtElzVbQDzdjzmyEOkxvHPb-O946GQt34T5h-Rn5JaffdbdHPadq_ZEfBjYSvHvYz9u3D5dfVVbW-_Xi9ulhXXmsxV6FTTrpaNML33oBDQAj9piuLAgiyltCUUgXTKyG6zou-U5tWCBWwV22tzti7g-8upx8L0myngTyOo4uYFrJSyxaMqmVX0LeP0Lu05Fi6K1RjGqUbYQolD5TPiShjsLtcJs57K8D-DsMewrAlDPsnDAtF9ObBetlM2P-T_P39AqgDQOUqbjH_f_sJ21-dP5Us</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Yang, Yang</creator><creator>Li, Bin</creator><creator>Hua, Rong</creator><creator>Zhang, Xiaobin</creator><creator>Jiang, Haoyao</creator><creator>Sun, Yifeng</creator><creator>Veronesi, Giulia</creator><creator>Ricciardi, Sara</creator><creator>Casiraghi, Monica</creator><creator>Durand, Marion</creator><creator>Caso, Raul</creator><creator>Sarkaria, Inderpal S.</creator><creator>Li, ZhiGang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20210201</creationdate><title>Assessment of Quality Outcomes and Learning Curve for Robot-Assisted Minimally Invasive McKeown Esophagectomy</title><author>Yang, Yang ; Li, Bin ; Hua, Rong ; Zhang, Xiaobin ; Jiang, Haoyao ; Sun, Yifeng ; Veronesi, Giulia ; Ricciardi, Sara ; Casiraghi, Monica ; Durand, Marion ; Caso, Raul ; Sarkaria, Inderpal S. ; Li, ZhiGang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f93a2a5171cdc60ae0e0fdb90fd300f25207fd33f6d31199c1d93b8113fed3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anastomotic leak</topic><topic>Esophageal cancer</topic><topic>Esophageal Neoplasms - surgery</topic><topic>Esophagectomy</topic><topic>Esophagus</topic><topic>Gastrointestinal surgery</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning Curve</topic><topic>Lymph nodes</topic><topic>Lymphatic system</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Oncology</topic><topic>Paralysis</topic><topic>Quality control</topic><topic>Retrospective Studies</topic><topic>Robotic surgery</topic><topic>Robotic Surgical Procedures</topic><topic>Robotics</topic><topic>Statistical analysis</topic><topic>Surgery</topic><topic>Surgical Oncology</topic><topic>Thoracic Oncology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Hua, Rong</creatorcontrib><creatorcontrib>Zhang, Xiaobin</creatorcontrib><creatorcontrib>Jiang, Haoyao</creatorcontrib><creatorcontrib>Sun, Yifeng</creatorcontrib><creatorcontrib>Veronesi, Giulia</creatorcontrib><creatorcontrib>Ricciardi, Sara</creatorcontrib><creatorcontrib>Casiraghi, Monica</creatorcontrib><creatorcontrib>Durand, Marion</creatorcontrib><creatorcontrib>Caso, Raul</creatorcontrib><creatorcontrib>Sarkaria, Inderpal S.</creatorcontrib><creatorcontrib>Li, ZhiGang</creatorcontrib><creatorcontrib>Written on behalf of the AME Thoracic Surgery Collaborative Group</creatorcontrib><creatorcontrib>Written on behalf of the AME Thoracic Surgery Collaborative Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of surgical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Li, Bin</au><au>Hua, Rong</au><au>Zhang, Xiaobin</au><au>Jiang, Haoyao</au><au>Sun, Yifeng</au><au>Veronesi, Giulia</au><au>Ricciardi, Sara</au><au>Casiraghi, Monica</au><au>Durand, Marion</au><au>Caso, Raul</au><au>Sarkaria, Inderpal S.</au><au>Li, ZhiGang</au><aucorp>Written on behalf of the AME Thoracic Surgery Collaborative Group</aucorp><aucorp>Written on behalf of the AME Thoracic Surgery Collaborative Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Quality Outcomes and Learning Curve for Robot-Assisted Minimally Invasive McKeown Esophagectomy</atitle><jtitle>Annals of surgical oncology</jtitle><stitle>Ann Surg Oncol</stitle><addtitle>Ann Surg Oncol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>28</volume><issue>2</issue><spage>676</spage><epage>684</epage><pages>676-684</pages><issn>1068-9265</issn><eissn>1534-4681</eissn><abstract>Background This study aimed to identify the results of the quality assessment and the learning curve of robot-assisted minimally invasive McKeown esophagectomy (RAMIE-MK). Methods The study retrospectively reviewed the data of 400 consecutive patients with esophageal cancer who underwent RAMIE-MK by a single surgeon from November 2015 to March 2019. Cumulative summation analysis of the learning curve was performed. The patients were divided into decile cohorts of 40 cases to minimize demographic deviations and to maximize the power of detecting statistically significant changes in performance. Results The 90-day mortality rate for all the patients was 0.5% (2 cases). The authors’ experience was divided into the ascending phase (40 cases), the plateau phase (175 cases), and the descending phase (185 cases). After 40 cases, significant improvements in operative time (328 vs. 251 min; P  = 0.019), estimated blood loss (350 vs. 200 ml; P  = 0.031), and conversion rates (12.5% vs. 2.5%; P  &lt; 0.001) were observed. After 80 cases, a decrease in the rates of anastomotic leakage (22.5% vs. 8.1%; P  = 0.001) and vocal cord palsy (31.3% vs. 18.4%; P  = 0.024) was observed. The number of harvested lymph nodes increased after 40 cases (13 vs. 23; P  &lt; 0.001), especially for lymph nodes along the recurrent laryngeal nerve (3.0 vs. 6.0; P  &lt; 0.001). Conclusions The learning phase of RAMIE-MK consists of 40 cases, and quality outcomes can be improved after 80 procedures. Several turning points related to the optimization of surgical outcomes can be used as benchmarks for surgeons performing RAMIE-MK.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32720046</pmid><doi>10.1245/s10434-020-08857-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-9265
ispartof Annals of surgical oncology, 2021-02, Vol.28 (2), p.676-684
issn 1068-9265
1534-4681
language eng
recordid cdi_proquest_miscellaneous_2428063529
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Anastomotic leak
Esophageal cancer
Esophageal Neoplasms - surgery
Esophagectomy
Esophagus
Gastrointestinal surgery
Humans
Learning
Learning Curve
Lymph nodes
Lymphatic system
Medicine
Medicine & Public Health
Oncology
Paralysis
Quality control
Retrospective Studies
Robotic surgery
Robotic Surgical Procedures
Robotics
Statistical analysis
Surgery
Surgical Oncology
Thoracic Oncology
title Assessment of Quality Outcomes and Learning Curve for Robot-Assisted Minimally Invasive McKeown Esophagectomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Quality%20Outcomes%20and%20Learning%20Curve%20for%20Robot-Assisted%20Minimally%20Invasive%20McKeown%20Esophagectomy&rft.jtitle=Annals%20of%20surgical%20oncology&rft.au=Yang,%20Yang&rft.aucorp=Written%20on%20behalf%20of%20the%20AME%20Thoracic%20Surgery%20Collaborative%20Group&rft.date=2021-02-01&rft.volume=28&rft.issue=2&rft.spage=676&rft.epage=684&rft.pages=676-684&rft.issn=1068-9265&rft.eissn=1534-4681&rft_id=info:doi/10.1245/s10434-020-08857-0&rft_dat=%3Cproquest_cross%3E2476734716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476734716&rft_id=info:pmid/32720046&rfr_iscdi=true