Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation
Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2020-10, Vol.15 (10), p.861-867 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 867 |
---|---|
container_issue | 10 |
container_start_page | 861 |
container_title | Nature nanotechnology |
container_volume | 15 |
creator | Nguyen, Van Luan Duong, Dinh Loc Lee, Sang Hyub Avila, José Han, Gyeongtak Kim, Young-Min Asensio, Maria C. Jeong, Se-Young Lee, Young Hee |
description | Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu–Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH
4
concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials.
Well-controlled multilayer graphene up to four layers thick with a defined stacking sequence is synthesized via SiC alloy formation on a Cu(111) substrate. |
doi_str_mv | 10.1038/s41565-020-0743-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2428060601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428060601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-180ee63234cd39f15c8ae3478456ba65727b60127676df155465f52377feaa533</originalsourceid><addsrcrecordid>eNp1kM1OGzEUha0KVGjoA3SDLLFhY_C_Z5ZVVChSpC6AteXM3AkGzzi1Z6iy4x36hjwJjkJTqVJ1F_dK5zvH1kHoC6MXjIrqMkumtCKUU0KNFIR-QMfMyIoIUauD_V2ZI_Qp50dKFa-5_IiOBDeslrU8Rm7hNpBIE4cxxRCgxdkPqwCkSZs8uhD8AHiV3PoBytH50ONffnzARWueColjaiHhZ-_wfHp9-X3rcTHFDe5i6t3o43CCDjsXMnx-3zN0f_Xtbv6dLH5c38y_LkgjDB8JqyiAFlzIphV1x1RTORDSVFLppdPKcLPUlHGjjW6LrKRWneLCmA6cU0LM0Pkud53izwnyaHufGwjBDRCnbLnkFdVlWEHP_kEf45SG8rtCGcEZq8w2kO2oJsWcE3R2nXzv0sYyarf9213_tvRvt_1bWjyn78nTsod27_hTeAH4DshFGlaQ_j79_9Q31jeQTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473211873</pqid></control><display><type>article</type><title>Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Nguyen, Van Luan ; Duong, Dinh Loc ; Lee, Sang Hyub ; Avila, José ; Han, Gyeongtak ; Kim, Young-Min ; Asensio, Maria C. ; Jeong, Se-Young ; Lee, Young Hee</creator><creatorcontrib>Nguyen, Van Luan ; Duong, Dinh Loc ; Lee, Sang Hyub ; Avila, José ; Han, Gyeongtak ; Kim, Young-Min ; Asensio, Maria C. ; Jeong, Se-Young ; Lee, Young Hee</creatorcontrib><description>Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu–Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH
4
concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials.
Well-controlled multilayer graphene up to four layers thick with a defined stacking sequence is synthesized via SiC alloy formation on a Cu(111) substrate.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-0743-0</identifier><identifier>PMID: 32719494</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/918/1052 ; 639/301/357/918/1055 ; Abscisic acid ; Bilayers ; Chemical vapor deposition ; Chemistry and Materials Science ; Crystal structure ; Crystallinity ; Crystallography ; Graphene ; Materials Science ; Multilayers ; Nanotechnology ; Nanotechnology and Microengineering ; Photoelectric emission ; Raman spectroscopy ; Silicon base alloys ; Silicon carbide ; Single crystals ; Spectroscopy ; Spectrum analysis ; Stacking ; Stacking sequence (composite materials) ; Sublimation ; Substrates ; Thickness ; Two dimensional materials</subject><ispartof>Nature nanotechnology, 2020-10, Vol.15 (10), p.861-867</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-180ee63234cd39f15c8ae3478456ba65727b60127676df155465f52377feaa533</citedby><cites>FETCH-LOGICAL-c372t-180ee63234cd39f15c8ae3478456ba65727b60127676df155465f52377feaa533</cites><orcidid>0000-0001-8252-7655 ; 0000-0002-4118-9589 ; 0000-0001-7403-8157 ; 0000-0003-1019-4403 ; 0000-0002-0995-4092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-020-0743-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-020-0743-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32719494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Van Luan</creatorcontrib><creatorcontrib>Duong, Dinh Loc</creatorcontrib><creatorcontrib>Lee, Sang Hyub</creatorcontrib><creatorcontrib>Avila, José</creatorcontrib><creatorcontrib>Han, Gyeongtak</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Asensio, Maria C.</creatorcontrib><creatorcontrib>Jeong, Se-Young</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><title>Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu–Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH
4
concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials.
Well-controlled multilayer graphene up to four layers thick with a defined stacking sequence is synthesized via SiC alloy formation on a Cu(111) substrate.</description><subject>639/301/357/918/1052</subject><subject>639/301/357/918/1055</subject><subject>Abscisic acid</subject><subject>Bilayers</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Photoelectric emission</subject><subject>Raman spectroscopy</subject><subject>Silicon base alloys</subject><subject>Silicon carbide</subject><subject>Single crystals</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stacking</subject><subject>Stacking sequence (composite materials)</subject><subject>Sublimation</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Two dimensional materials</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OGzEUha0KVGjoA3SDLLFhY_C_Z5ZVVChSpC6AteXM3AkGzzi1Z6iy4x36hjwJjkJTqVJ1F_dK5zvH1kHoC6MXjIrqMkumtCKUU0KNFIR-QMfMyIoIUauD_V2ZI_Qp50dKFa-5_IiOBDeslrU8Rm7hNpBIE4cxxRCgxdkPqwCkSZs8uhD8AHiV3PoBytH50ONffnzARWueColjaiHhZ-_wfHp9-X3rcTHFDe5i6t3o43CCDjsXMnx-3zN0f_Xtbv6dLH5c38y_LkgjDB8JqyiAFlzIphV1x1RTORDSVFLppdPKcLPUlHGjjW6LrKRWneLCmA6cU0LM0Pkud53izwnyaHufGwjBDRCnbLnkFdVlWEHP_kEf45SG8rtCGcEZq8w2kO2oJsWcE3R2nXzv0sYyarf9213_tvRvt_1bWjyn78nTsod27_hTeAH4DshFGlaQ_j79_9Q31jeQTg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Nguyen, Van Luan</creator><creator>Duong, Dinh Loc</creator><creator>Lee, Sang Hyub</creator><creator>Avila, José</creator><creator>Han, Gyeongtak</creator><creator>Kim, Young-Min</creator><creator>Asensio, Maria C.</creator><creator>Jeong, Se-Young</creator><creator>Lee, Young Hee</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8252-7655</orcidid><orcidid>https://orcid.org/0000-0002-4118-9589</orcidid><orcidid>https://orcid.org/0000-0001-7403-8157</orcidid><orcidid>https://orcid.org/0000-0003-1019-4403</orcidid><orcidid>https://orcid.org/0000-0002-0995-4092</orcidid></search><sort><creationdate>20201001</creationdate><title>Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation</title><author>Nguyen, Van Luan ; Duong, Dinh Loc ; Lee, Sang Hyub ; Avila, José ; Han, Gyeongtak ; Kim, Young-Min ; Asensio, Maria C. ; Jeong, Se-Young ; Lee, Young Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-180ee63234cd39f15c8ae3478456ba65727b60127676df155465f52377feaa533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/357/918/1052</topic><topic>639/301/357/918/1055</topic><topic>Abscisic acid</topic><topic>Bilayers</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Photoelectric emission</topic><topic>Raman spectroscopy</topic><topic>Silicon base alloys</topic><topic>Silicon carbide</topic><topic>Single crystals</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stacking</topic><topic>Stacking sequence (composite materials)</topic><topic>Sublimation</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van Luan</creatorcontrib><creatorcontrib>Duong, Dinh Loc</creatorcontrib><creatorcontrib>Lee, Sang Hyub</creatorcontrib><creatorcontrib>Avila, José</creatorcontrib><creatorcontrib>Han, Gyeongtak</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Asensio, Maria C.</creatorcontrib><creatorcontrib>Jeong, Se-Young</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Van Luan</au><au>Duong, Dinh Loc</au><au>Lee, Sang Hyub</au><au>Avila, José</au><au>Han, Gyeongtak</au><au>Kim, Young-Min</au><au>Asensio, Maria C.</au><au>Jeong, Se-Young</au><au>Lee, Young Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>861</spage><epage>867</epage><pages>861-867</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu–Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH
4
concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials.
Well-controlled multilayer graphene up to four layers thick with a defined stacking sequence is synthesized via SiC alloy formation on a Cu(111) substrate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32719494</pmid><doi>10.1038/s41565-020-0743-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8252-7655</orcidid><orcidid>https://orcid.org/0000-0002-4118-9589</orcidid><orcidid>https://orcid.org/0000-0001-7403-8157</orcidid><orcidid>https://orcid.org/0000-0003-1019-4403</orcidid><orcidid>https://orcid.org/0000-0002-0995-4092</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2020-10, Vol.15 (10), p.861-867 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2428060601 |
source | Nature; Springer Nature - Complete Springer Journals |
subjects | 639/301/357/918/1052 639/301/357/918/1055 Abscisic acid Bilayers Chemical vapor deposition Chemistry and Materials Science Crystal structure Crystallinity Crystallography Graphene Materials Science Multilayers Nanotechnology Nanotechnology and Microengineering Photoelectric emission Raman spectroscopy Silicon base alloys Silicon carbide Single crystals Spectroscopy Spectrum analysis Stacking Stacking sequence (composite materials) Sublimation Substrates Thickness Two dimensional materials |
title | Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer-controlled%20single-crystalline%20graphene%20film%20with%20stacking%20order%20via%20Cu%E2%80%93Si%20alloy%20formation&rft.jtitle=Nature%20nanotechnology&rft.au=Nguyen,%20Van%20Luan&rft.date=2020-10-01&rft.volume=15&rft.issue=10&rft.spage=861&rft.epage=867&rft.pages=861-867&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-0743-0&rft_dat=%3Cproquest_cross%3E2428060601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473211873&rft_id=info:pmid/32719494&rfr_iscdi=true |