Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation

Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2020-10, Vol.15 (10), p.861-867
Hauptverfasser: Nguyen, Van Luan, Duong, Dinh Loc, Lee, Sang Hyub, Avila, José, Han, Gyeongtak, Kim, Young-Min, Asensio, Maria C., Jeong, Se-Young, Lee, Young Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 867
container_issue 10
container_start_page 861
container_title Nature nanotechnology
container_volume 15
creator Nguyen, Van Luan
Duong, Dinh Loc
Lee, Sang Hyub
Avila, José
Han, Gyeongtak
Kim, Young-Min
Asensio, Maria C.
Jeong, Se-Young
Lee, Young Hee
description Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu–Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH 4 concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials. Well-controlled multilayer graphene up to four layers thick with a defined stacking sequence is synthesized via SiC alloy formation on a Cu(111) substrate.
doi_str_mv 10.1038/s41565-020-0743-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2428060601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428060601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-180ee63234cd39f15c8ae3478456ba65727b60127676df155465f52377feaa533</originalsourceid><addsrcrecordid>eNp1kM1OGzEUha0KVGjoA3SDLLFhY_C_Z5ZVVChSpC6AteXM3AkGzzi1Z6iy4x36hjwJjkJTqVJ1F_dK5zvH1kHoC6MXjIrqMkumtCKUU0KNFIR-QMfMyIoIUauD_V2ZI_Qp50dKFa-5_IiOBDeslrU8Rm7hNpBIE4cxxRCgxdkPqwCkSZs8uhD8AHiV3PoBytH50ONffnzARWueColjaiHhZ-_wfHp9-X3rcTHFDe5i6t3o43CCDjsXMnx-3zN0f_Xtbv6dLH5c38y_LkgjDB8JqyiAFlzIphV1x1RTORDSVFLppdPKcLPUlHGjjW6LrKRWneLCmA6cU0LM0Pkud53izwnyaHufGwjBDRCnbLnkFdVlWEHP_kEf45SG8rtCGcEZq8w2kO2oJsWcE3R2nXzv0sYyarf9213_tvRvt_1bWjyn78nTsod27_hTeAH4DshFGlaQ_j79_9Q31jeQTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473211873</pqid></control><display><type>article</type><title>Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Nguyen, Van Luan ; Duong, Dinh Loc ; Lee, Sang Hyub ; Avila, José ; Han, Gyeongtak ; Kim, Young-Min ; Asensio, Maria C. ; Jeong, Se-Young ; Lee, Young Hee</creator><creatorcontrib>Nguyen, Van Luan ; Duong, Dinh Loc ; Lee, Sang Hyub ; Avila, José ; Han, Gyeongtak ; Kim, Young-Min ; Asensio, Maria C. ; Jeong, Se-Young ; Lee, Young Hee</creatorcontrib><description>Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu–Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH 4 concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials. Well-controlled multilayer graphene up to four layers thick with a defined stacking sequence is synthesized via SiC alloy formation on a Cu(111) substrate.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-0743-0</identifier><identifier>PMID: 32719494</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/918/1052 ; 639/301/357/918/1055 ; Abscisic acid ; Bilayers ; Chemical vapor deposition ; Chemistry and Materials Science ; Crystal structure ; Crystallinity ; Crystallography ; Graphene ; Materials Science ; Multilayers ; Nanotechnology ; Nanotechnology and Microengineering ; Photoelectric emission ; Raman spectroscopy ; Silicon base alloys ; Silicon carbide ; Single crystals ; Spectroscopy ; Spectrum analysis ; Stacking ; Stacking sequence (composite materials) ; Sublimation ; Substrates ; Thickness ; Two dimensional materials</subject><ispartof>Nature nanotechnology, 2020-10, Vol.15 (10), p.861-867</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-180ee63234cd39f15c8ae3478456ba65727b60127676df155465f52377feaa533</citedby><cites>FETCH-LOGICAL-c372t-180ee63234cd39f15c8ae3478456ba65727b60127676df155465f52377feaa533</cites><orcidid>0000-0001-8252-7655 ; 0000-0002-4118-9589 ; 0000-0001-7403-8157 ; 0000-0003-1019-4403 ; 0000-0002-0995-4092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-020-0743-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-020-0743-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32719494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Van Luan</creatorcontrib><creatorcontrib>Duong, Dinh Loc</creatorcontrib><creatorcontrib>Lee, Sang Hyub</creatorcontrib><creatorcontrib>Avila, José</creatorcontrib><creatorcontrib>Han, Gyeongtak</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Asensio, Maria C.</creatorcontrib><creatorcontrib>Jeong, Se-Young</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><title>Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu–Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH 4 concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials. Well-controlled multilayer graphene up to four layers thick with a defined stacking sequence is synthesized via SiC alloy formation on a Cu(111) substrate.</description><subject>639/301/357/918/1052</subject><subject>639/301/357/918/1055</subject><subject>Abscisic acid</subject><subject>Bilayers</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Photoelectric emission</subject><subject>Raman spectroscopy</subject><subject>Silicon base alloys</subject><subject>Silicon carbide</subject><subject>Single crystals</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stacking</subject><subject>Stacking sequence (composite materials)</subject><subject>Sublimation</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Two dimensional materials</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OGzEUha0KVGjoA3SDLLFhY_C_Z5ZVVChSpC6AteXM3AkGzzi1Z6iy4x36hjwJjkJTqVJ1F_dK5zvH1kHoC6MXjIrqMkumtCKUU0KNFIR-QMfMyIoIUauD_V2ZI_Qp50dKFa-5_IiOBDeslrU8Rm7hNpBIE4cxxRCgxdkPqwCkSZs8uhD8AHiV3PoBytH50ONffnzARWueColjaiHhZ-_wfHp9-X3rcTHFDe5i6t3o43CCDjsXMnx-3zN0f_Xtbv6dLH5c38y_LkgjDB8JqyiAFlzIphV1x1RTORDSVFLppdPKcLPUlHGjjW6LrKRWneLCmA6cU0LM0Pkud53izwnyaHufGwjBDRCnbLnkFdVlWEHP_kEf45SG8rtCGcEZq8w2kO2oJsWcE3R2nXzv0sYyarf9213_tvRvt_1bWjyn78nTsod27_hTeAH4DshFGlaQ_j79_9Q31jeQTg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Nguyen, Van Luan</creator><creator>Duong, Dinh Loc</creator><creator>Lee, Sang Hyub</creator><creator>Avila, José</creator><creator>Han, Gyeongtak</creator><creator>Kim, Young-Min</creator><creator>Asensio, Maria C.</creator><creator>Jeong, Se-Young</creator><creator>Lee, Young Hee</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8252-7655</orcidid><orcidid>https://orcid.org/0000-0002-4118-9589</orcidid><orcidid>https://orcid.org/0000-0001-7403-8157</orcidid><orcidid>https://orcid.org/0000-0003-1019-4403</orcidid><orcidid>https://orcid.org/0000-0002-0995-4092</orcidid></search><sort><creationdate>20201001</creationdate><title>Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation</title><author>Nguyen, Van Luan ; Duong, Dinh Loc ; Lee, Sang Hyub ; Avila, José ; Han, Gyeongtak ; Kim, Young-Min ; Asensio, Maria C. ; Jeong, Se-Young ; Lee, Young Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-180ee63234cd39f15c8ae3478456ba65727b60127676df155465f52377feaa533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/357/918/1052</topic><topic>639/301/357/918/1055</topic><topic>Abscisic acid</topic><topic>Bilayers</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Photoelectric emission</topic><topic>Raman spectroscopy</topic><topic>Silicon base alloys</topic><topic>Silicon carbide</topic><topic>Single crystals</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stacking</topic><topic>Stacking sequence (composite materials)</topic><topic>Sublimation</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van Luan</creatorcontrib><creatorcontrib>Duong, Dinh Loc</creatorcontrib><creatorcontrib>Lee, Sang Hyub</creatorcontrib><creatorcontrib>Avila, José</creatorcontrib><creatorcontrib>Han, Gyeongtak</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Asensio, Maria C.</creatorcontrib><creatorcontrib>Jeong, Se-Young</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Van Luan</au><au>Duong, Dinh Loc</au><au>Lee, Sang Hyub</au><au>Avila, José</au><au>Han, Gyeongtak</au><au>Kim, Young-Min</au><au>Asensio, Maria C.</au><au>Jeong, Se-Young</au><au>Lee, Young Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>861</spage><epage>867</epage><pages>861-867</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu–Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH 4 concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials. Well-controlled multilayer graphene up to four layers thick with a defined stacking sequence is synthesized via SiC alloy formation on a Cu(111) substrate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32719494</pmid><doi>10.1038/s41565-020-0743-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8252-7655</orcidid><orcidid>https://orcid.org/0000-0002-4118-9589</orcidid><orcidid>https://orcid.org/0000-0001-7403-8157</orcidid><orcidid>https://orcid.org/0000-0003-1019-4403</orcidid><orcidid>https://orcid.org/0000-0002-0995-4092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2020-10, Vol.15 (10), p.861-867
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2428060601
source Nature; Springer Nature - Complete Springer Journals
subjects 639/301/357/918/1052
639/301/357/918/1055
Abscisic acid
Bilayers
Chemical vapor deposition
Chemistry and Materials Science
Crystal structure
Crystallinity
Crystallography
Graphene
Materials Science
Multilayers
Nanotechnology
Nanotechnology and Microengineering
Photoelectric emission
Raman spectroscopy
Silicon base alloys
Silicon carbide
Single crystals
Spectroscopy
Spectrum analysis
Stacking
Stacking sequence (composite materials)
Sublimation
Substrates
Thickness
Two dimensional materials
title Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer-controlled%20single-crystalline%20graphene%20film%20with%20stacking%20order%20via%20Cu%E2%80%93Si%20alloy%20formation&rft.jtitle=Nature%20nanotechnology&rft.au=Nguyen,%20Van%20Luan&rft.date=2020-10-01&rft.volume=15&rft.issue=10&rft.spage=861&rft.epage=867&rft.pages=861-867&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-0743-0&rft_dat=%3Cproquest_cross%3E2428060601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473211873&rft_id=info:pmid/32719494&rfr_iscdi=true