How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology

Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior Research Methods 2021-02, Vol.53 (1), p.354-370
Hauptverfasser: Canessa, Enrique, Chaigneau, Sergio E., Lagos, Rodrigo, Medina, Felipe A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 1
container_start_page 354
container_title Behavior Research Methods
container_volume 53
creator Canessa, Enrique
Chaigneau, Sergio E.
Lagos, Rodrigo
Medina, Felipe A.
description Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’ variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast, the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show how to use the equations and discuss how they may allow more reasonable analyses and comparisons of parameter values among different concepts in a CPN, and across different CPNs.
doi_str_mv 10.3758/s13428-020-01439-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2427307648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713929294</galeid><sourcerecordid>A713929294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-d552cadc3a144cb14e9ccdc23cb70dadba7936349ec44af75d5883b7f208b9003</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERcvCH-CALHHhkuLP2OFWVUCRVuJSzpZjT1apEjvYjqr99_WSFlAPyAd7PM-M3pkXoXeUXHIl9adMuWC6IYw0hAreNfoFuqBSioZLpl_-8z5Hr3O-I4RrRsUrdM6ZIrJtyQWabuI9LhE7m9IRx7VgF4ODpax2wkuKC6QyQsYhpnkMB5zL6k-xzXixyc5QIGHIZZxtGWN4yn_Ge8g5hoyHFGcMLk7xcHyDzgY7ZXj7eO_Qz69fbq9vmv2Pb9-vr_aNE7otjZeSOesdt1QI11MBnXPeMe56Rbz1vVUdb7nowAlhByW91Jr3amBE912dcoc-bn3rAL_Wqs7MY3YwTTZAXLNhgilOVCt0RT88Q-_imkJVVyndEco6wSt1uVEHO4EZwxBLsq4eD_NYFwbDWP-vFOUd604VO8S2ApdizgkGs6S6onQ0lJiTeWYzz1TzzG_zzEnL-0ctaz-D_1Py5FYF-AbkmgoHSH_F_qftAzy_plo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489012943</pqid></control><display><type>article</type><title>How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Canessa, Enrique ; Chaigneau, Sergio E. ; Lagos, Rodrigo ; Medina, Felipe A.</creator><creatorcontrib>Canessa, Enrique ; Chaigneau, Sergio E. ; Lagos, Rodrigo ; Medina, Felipe A.</creatorcontrib><description>Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’ variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast, the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show how to use the equations and discuss how they may allow more reasonable analyses and comparisons of parameter values among different concepts in a CPN, and across different CPNs.</description><identifier>ISSN: 1554-3528</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-020-01439-8</identifier><identifier>PMID: 32705660</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral Science and Psychology ; Cognitive Psychology ; Humans ; Parameter estimation ; Psychology ; Semantics</subject><ispartof>Behavior Research Methods, 2021-02, Vol.53 (1), p.354-370</ispartof><rights>The Psychonomic Society, Inc. 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Psychonomic Society, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-d552cadc3a144cb14e9ccdc23cb70dadba7936349ec44af75d5883b7f208b9003</citedby><cites>FETCH-LOGICAL-c486t-d552cadc3a144cb14e9ccdc23cb70dadba7936349ec44af75d5883b7f208b9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-020-01439-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-020-01439-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32705660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Canessa, Enrique</creatorcontrib><creatorcontrib>Chaigneau, Sergio E.</creatorcontrib><creatorcontrib>Lagos, Rodrigo</creatorcontrib><creatorcontrib>Medina, Felipe A.</creatorcontrib><title>How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’ variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast, the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show how to use the equations and discuss how they may allow more reasonable analyses and comparisons of parameter values among different concepts in a CPN, and across different CPNs.</description><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Humans</subject><subject>Parameter estimation</subject><subject>Psychology</subject><subject>Semantics</subject><issn>1554-3528</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi1ERcvCH-CALHHhkuLP2OFWVUCRVuJSzpZjT1apEjvYjqr99_WSFlAPyAd7PM-M3pkXoXeUXHIl9adMuWC6IYw0hAreNfoFuqBSioZLpl_-8z5Hr3O-I4RrRsUrdM6ZIrJtyQWabuI9LhE7m9IRx7VgF4ODpax2wkuKC6QyQsYhpnkMB5zL6k-xzXixyc5QIGHIZZxtGWN4yn_Ge8g5hoyHFGcMLk7xcHyDzgY7ZXj7eO_Qz69fbq9vmv2Pb9-vr_aNE7otjZeSOesdt1QI11MBnXPeMe56Rbz1vVUdb7nowAlhByW91Jr3amBE912dcoc-bn3rAL_Wqs7MY3YwTTZAXLNhgilOVCt0RT88Q-_imkJVVyndEco6wSt1uVEHO4EZwxBLsq4eD_NYFwbDWP-vFOUd604VO8S2ApdizgkGs6S6onQ0lJiTeWYzz1TzzG_zzEnL-0ctaz-D_1Py5FYF-AbkmgoHSH_F_qftAzy_plo</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Canessa, Enrique</creator><creator>Chaigneau, Sergio E.</creator><creator>Lagos, Rodrigo</creator><creator>Medina, Felipe A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20210201</creationdate><title>How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology</title><author>Canessa, Enrique ; Chaigneau, Sergio E. ; Lagos, Rodrigo ; Medina, Felipe A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-d552cadc3a144cb14e9ccdc23cb70dadba7936349ec44af75d5883b7f208b9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Humans</topic><topic>Parameter estimation</topic><topic>Psychology</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canessa, Enrique</creatorcontrib><creatorcontrib>Chaigneau, Sergio E.</creatorcontrib><creatorcontrib>Lagos, Rodrigo</creatorcontrib><creatorcontrib>Medina, Felipe A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canessa, Enrique</au><au>Chaigneau, Sergio E.</au><au>Lagos, Rodrigo</au><au>Medina, Felipe A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>53</volume><issue>1</issue><spage>354</spage><epage>370</epage><pages>354-370</pages><issn>1554-3528</issn><eissn>1554-3528</eissn><abstract>Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’ variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast, the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show how to use the equations and discuss how they may allow more reasonable analyses and comparisons of parameter values among different concepts in a CPN, and across different CPNs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32705660</pmid><doi>10.3758/s13428-020-01439-8</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-3528
ispartof Behavior Research Methods, 2021-02, Vol.53 (1), p.354-370
issn 1554-3528
1554-3528
language eng
recordid cdi_proquest_miscellaneous_2427307648
source MEDLINE; SpringerLink Journals
subjects Behavioral Science and Psychology
Cognitive Psychology
Humans
Parameter estimation
Psychology
Semantics
title How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20carry%20out%20conceptual%20properties%20norming%20studies%20as%20parameter%20estimation%20studies:%20Lessons%20from%20ecology&rft.jtitle=Behavior%20Research%20Methods&rft.au=Canessa,%20Enrique&rft.date=2021-02-01&rft.volume=53&rft.issue=1&rft.spage=354&rft.epage=370&rft.pages=354-370&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-020-01439-8&rft_dat=%3Cgale_proqu%3EA713929294%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489012943&rft_id=info:pmid/32705660&rft_galeid=A713929294&rfr_iscdi=true