How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology
Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for e...
Gespeichert in:
Veröffentlicht in: | Behavior Research Methods 2021-02, Vol.53 (1), p.354-370 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 1 |
container_start_page | 354 |
container_title | Behavior Research Methods |
container_volume | 53 |
creator | Canessa, Enrique Chaigneau, Sergio E. Lagos, Rodrigo Medina, Felipe A. |
description | Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’ variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast, the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show how to use the equations and discuss how they may allow more reasonable analyses and comparisons of parameter values among different concepts in a CPN, and across different CPNs. |
doi_str_mv | 10.3758/s13428-020-01439-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2427307648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713929294</galeid><sourcerecordid>A713929294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-d552cadc3a144cb14e9ccdc23cb70dadba7936349ec44af75d5883b7f208b9003</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERcvCH-CALHHhkuLP2OFWVUCRVuJSzpZjT1apEjvYjqr99_WSFlAPyAd7PM-M3pkXoXeUXHIl9adMuWC6IYw0hAreNfoFuqBSioZLpl_-8z5Hr3O-I4RrRsUrdM6ZIrJtyQWabuI9LhE7m9IRx7VgF4ODpax2wkuKC6QyQsYhpnkMB5zL6k-xzXixyc5QIGHIZZxtGWN4yn_Ge8g5hoyHFGcMLk7xcHyDzgY7ZXj7eO_Qz69fbq9vmv2Pb9-vr_aNE7otjZeSOesdt1QI11MBnXPeMe56Rbz1vVUdb7nowAlhByW91Jr3amBE912dcoc-bn3rAL_Wqs7MY3YwTTZAXLNhgilOVCt0RT88Q-_imkJVVyndEco6wSt1uVEHO4EZwxBLsq4eD_NYFwbDWP-vFOUd604VO8S2ApdizgkGs6S6onQ0lJiTeWYzz1TzzG_zzEnL-0ctaz-D_1Py5FYF-AbkmgoHSH_F_qftAzy_plo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489012943</pqid></control><display><type>article</type><title>How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Canessa, Enrique ; Chaigneau, Sergio E. ; Lagos, Rodrigo ; Medina, Felipe A.</creator><creatorcontrib>Canessa, Enrique ; Chaigneau, Sergio E. ; Lagos, Rodrigo ; Medina, Felipe A.</creatorcontrib><description>Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’ variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast, the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show how to use the equations and discuss how they may allow more reasonable analyses and comparisons of parameter values among different concepts in a CPN, and across different CPNs.</description><identifier>ISSN: 1554-3528</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-020-01439-8</identifier><identifier>PMID: 32705660</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral Science and Psychology ; Cognitive Psychology ; Humans ; Parameter estimation ; Psychology ; Semantics</subject><ispartof>Behavior Research Methods, 2021-02, Vol.53 (1), p.354-370</ispartof><rights>The Psychonomic Society, Inc. 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Psychonomic Society, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-d552cadc3a144cb14e9ccdc23cb70dadba7936349ec44af75d5883b7f208b9003</citedby><cites>FETCH-LOGICAL-c486t-d552cadc3a144cb14e9ccdc23cb70dadba7936349ec44af75d5883b7f208b9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-020-01439-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-020-01439-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32705660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Canessa, Enrique</creatorcontrib><creatorcontrib>Chaigneau, Sergio E.</creatorcontrib><creatorcontrib>Lagos, Rodrigo</creatorcontrib><creatorcontrib>Medina, Felipe A.</creatorcontrib><title>How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’ variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast, the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show how to use the equations and discuss how they may allow more reasonable analyses and comparisons of parameter values among different concepts in a CPN, and across different CPNs.</description><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Humans</subject><subject>Parameter estimation</subject><subject>Psychology</subject><subject>Semantics</subject><issn>1554-3528</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi1ERcvCH-CALHHhkuLP2OFWVUCRVuJSzpZjT1apEjvYjqr99_WSFlAPyAd7PM-M3pkXoXeUXHIl9adMuWC6IYw0hAreNfoFuqBSioZLpl_-8z5Hr3O-I4RrRsUrdM6ZIrJtyQWabuI9LhE7m9IRx7VgF4ODpax2wkuKC6QyQsYhpnkMB5zL6k-xzXixyc5QIGHIZZxtGWN4yn_Ge8g5hoyHFGcMLk7xcHyDzgY7ZXj7eO_Qz69fbq9vmv2Pb9-vr_aNE7otjZeSOesdt1QI11MBnXPeMe56Rbz1vVUdb7nowAlhByW91Jr3amBE912dcoc-bn3rAL_Wqs7MY3YwTTZAXLNhgilOVCt0RT88Q-_imkJVVyndEco6wSt1uVEHO4EZwxBLsq4eD_NYFwbDWP-vFOUd604VO8S2ApdizgkGs6S6onQ0lJiTeWYzz1TzzG_zzEnL-0ctaz-D_1Py5FYF-AbkmgoHSH_F_qftAzy_plo</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Canessa, Enrique</creator><creator>Chaigneau, Sergio E.</creator><creator>Lagos, Rodrigo</creator><creator>Medina, Felipe A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20210201</creationdate><title>How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology</title><author>Canessa, Enrique ; Chaigneau, Sergio E. ; Lagos, Rodrigo ; Medina, Felipe A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-d552cadc3a144cb14e9ccdc23cb70dadba7936349ec44af75d5883b7f208b9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Humans</topic><topic>Parameter estimation</topic><topic>Psychology</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canessa, Enrique</creatorcontrib><creatorcontrib>Chaigneau, Sergio E.</creatorcontrib><creatorcontrib>Lagos, Rodrigo</creatorcontrib><creatorcontrib>Medina, Felipe A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canessa, Enrique</au><au>Chaigneau, Sergio E.</au><au>Lagos, Rodrigo</au><au>Medina, Felipe A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>53</volume><issue>1</issue><spage>354</spage><epage>370</epage><pages>354-370</pages><issn>1554-3528</issn><eissn>1554-3528</eissn><abstract>Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’ variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast, the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show how to use the equations and discuss how they may allow more reasonable analyses and comparisons of parameter values among different concepts in a CPN, and across different CPNs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32705660</pmid><doi>10.3758/s13428-020-01439-8</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-3528 |
ispartof | Behavior Research Methods, 2021-02, Vol.53 (1), p.354-370 |
issn | 1554-3528 1554-3528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2427307648 |
source | MEDLINE; SpringerLink Journals |
subjects | Behavioral Science and Psychology Cognitive Psychology Humans Parameter estimation Psychology Semantics |
title | How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20carry%20out%20conceptual%20properties%20norming%20studies%20as%20parameter%20estimation%20studies:%20Lessons%20from%20ecology&rft.jtitle=Behavior%20Research%20Methods&rft.au=Canessa,%20Enrique&rft.date=2021-02-01&rft.volume=53&rft.issue=1&rft.spage=354&rft.epage=370&rft.pages=354-370&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-020-01439-8&rft_dat=%3Cgale_proqu%3EA713929294%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489012943&rft_id=info:pmid/32705660&rft_galeid=A713929294&rfr_iscdi=true |