Miniaturization of the Superconducting Memory Cell via a Three-Dimensional Nb Nano-superconducting Quantum Interference Device

Scalable memories that can match the speeds of superconducting logic circuits have long been desired to enable a superconducting computer. A superconducting loop that includes a Josephson junction can store a flux quantum state in picoseconds. However, the requirement for the loop inductance to crea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-09, Vol.14 (9), p.11002-11008
Hauptverfasser: Chen, Lei, Wu, Lili, Wang, Yue, Pan, Yinping, Zhang, Denghui, Zeng, Junwen, Liu, Xiaoyu, Ma, Linxian, Peng, Wei, Wang, Yihua, Ren, Jie, Wang, Zhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11008
container_issue 9
container_start_page 11002
container_title ACS nano
container_volume 14
creator Chen, Lei
Wu, Lili
Wang, Yue
Pan, Yinping
Zhang, Denghui
Zeng, Junwen
Liu, Xiaoyu
Ma, Linxian
Peng, Wei
Wang, Yihua
Ren, Jie
Wang, Zhen
description Scalable memories that can match the speeds of superconducting logic circuits have long been desired to enable a superconducting computer. A superconducting loop that includes a Josephson junction can store a flux quantum state in picoseconds. However, the requirement for the loop inductance to create a bistate hysteresis sets a limit on the minimal area occupied by a single memory cell. Here, we present a miniaturized superconducting memory cell based on a three-dimensional (3D) Nb nano-superconducting quantum interference device (nano-SQUID). The major cell area here fits within an 8 × 9 μm2 rectangle with a cross-selected function for memory implementation. The cell shows periodic tunable hysteresis between two neighboring flux quantum states produced by bias current sweeping because of the large modulation depth of the 3D nano-SQUID (∼66%). Furthermore, the measured current-phase relations (CPRs) of nano-SQUIDs are shown to be skewed from a sine function, as predicted by theoretical modeling. The skewness and the critical current of 3D nano-SQUIDs are linearly correlated. It is also found that the hysteresis loop size is in a linear scaling relationship with the CPR skewness using the statistics from characterization of 26 devices. We show that the CPR skewness range of π/4–3π/4 is equivalent to a large loop inductance in creating a stable bistate hysteresis for memory implementation. Therefore, the skewed CPR of 3D nano-SQUID enables further superconducting memory cell miniaturization by overcoming the inductance limitation of the loop area.
doi_str_mv 10.1021/acsnano.0c04405
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2426535906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426535906</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-62aad4c719a1b0cf3961d4efd6a8c7eab41373d267eb3dfa9c07b0832d5953dc3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhoMoWKtnr3sUJO1uNtkkR2n9KLSKWMFbmGwmdkuyW3ezhXrwtxtp8SB4moF5n2HmCYJLRkeMRmwM0mnQZkQljWOaHAUDlnMR0ky8Hf_2CTsNzpxbU5qkWSoGwddCaQWdt-oTOmU0MTXpVkhe_AatNLryslP6nSywNXZHJtg0ZKuAAFmuLGI4VS1q14PQkMeSPPYXhO4P--xBd74lM92hrdGilkimuFUSz4OTGhqHF4c6DF7vbpeTh3D-dD-b3MxD4KnoQhEBVLFMWQ6spLLmuWBVjHUlIJMpQhkznvIqEimWvKohlzQtacajKskTXkk-DK72ezfWfHh0XdEqJ_tnQKPxrojiSCQ8yanoo-N9VFrjnMW62FjVgt0VjBY_pouD6eJguieu90Q_KNbG216G-zf9Df4HhNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426535906</pqid></control><display><type>article</type><title>Miniaturization of the Superconducting Memory Cell via a Three-Dimensional Nb Nano-superconducting Quantum Interference Device</title><source>American Chemical Society Journals</source><creator>Chen, Lei ; Wu, Lili ; Wang, Yue ; Pan, Yinping ; Zhang, Denghui ; Zeng, Junwen ; Liu, Xiaoyu ; Ma, Linxian ; Peng, Wei ; Wang, Yihua ; Ren, Jie ; Wang, Zhen</creator><creatorcontrib>Chen, Lei ; Wu, Lili ; Wang, Yue ; Pan, Yinping ; Zhang, Denghui ; Zeng, Junwen ; Liu, Xiaoyu ; Ma, Linxian ; Peng, Wei ; Wang, Yihua ; Ren, Jie ; Wang, Zhen</creatorcontrib><description>Scalable memories that can match the speeds of superconducting logic circuits have long been desired to enable a superconducting computer. A superconducting loop that includes a Josephson junction can store a flux quantum state in picoseconds. However, the requirement for the loop inductance to create a bistate hysteresis sets a limit on the minimal area occupied by a single memory cell. Here, we present a miniaturized superconducting memory cell based on a three-dimensional (3D) Nb nano-superconducting quantum interference device (nano-SQUID). The major cell area here fits within an 8 × 9 μm2 rectangle with a cross-selected function for memory implementation. The cell shows periodic tunable hysteresis between two neighboring flux quantum states produced by bias current sweeping because of the large modulation depth of the 3D nano-SQUID (∼66%). Furthermore, the measured current-phase relations (CPRs) of nano-SQUIDs are shown to be skewed from a sine function, as predicted by theoretical modeling. The skewness and the critical current of 3D nano-SQUIDs are linearly correlated. It is also found that the hysteresis loop size is in a linear scaling relationship with the CPR skewness using the statistics from characterization of 26 devices. We show that the CPR skewness range of π/4–3π/4 is equivalent to a large loop inductance in creating a stable bistate hysteresis for memory implementation. Therefore, the skewed CPR of 3D nano-SQUID enables further superconducting memory cell miniaturization by overcoming the inductance limitation of the loop area.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c04405</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2020-09, Vol.14 (9), p.11002-11008</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-62aad4c719a1b0cf3961d4efd6a8c7eab41373d267eb3dfa9c07b0832d5953dc3</citedby><cites>FETCH-LOGICAL-a376t-62aad4c719a1b0cf3961d4efd6a8c7eab41373d267eb3dfa9c07b0832d5953dc3</cites><orcidid>0000-0002-4746-5441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c04405$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c04405$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Pan, Yinping</creatorcontrib><creatorcontrib>Zhang, Denghui</creatorcontrib><creatorcontrib>Zeng, Junwen</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Ma, Linxian</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Wang, Yihua</creatorcontrib><creatorcontrib>Ren, Jie</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><title>Miniaturization of the Superconducting Memory Cell via a Three-Dimensional Nb Nano-superconducting Quantum Interference Device</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Scalable memories that can match the speeds of superconducting logic circuits have long been desired to enable a superconducting computer. A superconducting loop that includes a Josephson junction can store a flux quantum state in picoseconds. However, the requirement for the loop inductance to create a bistate hysteresis sets a limit on the minimal area occupied by a single memory cell. Here, we present a miniaturized superconducting memory cell based on a three-dimensional (3D) Nb nano-superconducting quantum interference device (nano-SQUID). The major cell area here fits within an 8 × 9 μm2 rectangle with a cross-selected function for memory implementation. The cell shows periodic tunable hysteresis between two neighboring flux quantum states produced by bias current sweeping because of the large modulation depth of the 3D nano-SQUID (∼66%). Furthermore, the measured current-phase relations (CPRs) of nano-SQUIDs are shown to be skewed from a sine function, as predicted by theoretical modeling. The skewness and the critical current of 3D nano-SQUIDs are linearly correlated. It is also found that the hysteresis loop size is in a linear scaling relationship with the CPR skewness using the statistics from characterization of 26 devices. We show that the CPR skewness range of π/4–3π/4 is equivalent to a large loop inductance in creating a stable bistate hysteresis for memory implementation. Therefore, the skewed CPR of 3D nano-SQUID enables further superconducting memory cell miniaturization by overcoming the inductance limitation of the loop area.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhoMoWKtnr3sUJO1uNtkkR2n9KLSKWMFbmGwmdkuyW3ezhXrwtxtp8SB4moF5n2HmCYJLRkeMRmwM0mnQZkQljWOaHAUDlnMR0ky8Hf_2CTsNzpxbU5qkWSoGwddCaQWdt-oTOmU0MTXpVkhe_AatNLryslP6nSywNXZHJtg0ZKuAAFmuLGI4VS1q14PQkMeSPPYXhO4P--xBd74lM92hrdGilkimuFUSz4OTGhqHF4c6DF7vbpeTh3D-dD-b3MxD4KnoQhEBVLFMWQ6spLLmuWBVjHUlIJMpQhkznvIqEimWvKohlzQtacajKskTXkk-DK72ezfWfHh0XdEqJ_tnQKPxrojiSCQ8yanoo-N9VFrjnMW62FjVgt0VjBY_pouD6eJguieu90Q_KNbG216G-zf9Df4HhNY</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>Chen, Lei</creator><creator>Wu, Lili</creator><creator>Wang, Yue</creator><creator>Pan, Yinping</creator><creator>Zhang, Denghui</creator><creator>Zeng, Junwen</creator><creator>Liu, Xiaoyu</creator><creator>Ma, Linxian</creator><creator>Peng, Wei</creator><creator>Wang, Yihua</creator><creator>Ren, Jie</creator><creator>Wang, Zhen</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4746-5441</orcidid></search><sort><creationdate>20200922</creationdate><title>Miniaturization of the Superconducting Memory Cell via a Three-Dimensional Nb Nano-superconducting Quantum Interference Device</title><author>Chen, Lei ; Wu, Lili ; Wang, Yue ; Pan, Yinping ; Zhang, Denghui ; Zeng, Junwen ; Liu, Xiaoyu ; Ma, Linxian ; Peng, Wei ; Wang, Yihua ; Ren, Jie ; Wang, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-62aad4c719a1b0cf3961d4efd6a8c7eab41373d267eb3dfa9c07b0832d5953dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Pan, Yinping</creatorcontrib><creatorcontrib>Zhang, Denghui</creatorcontrib><creatorcontrib>Zeng, Junwen</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Ma, Linxian</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Wang, Yihua</creatorcontrib><creatorcontrib>Ren, Jie</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lei</au><au>Wu, Lili</au><au>Wang, Yue</au><au>Pan, Yinping</au><au>Zhang, Denghui</au><au>Zeng, Junwen</au><au>Liu, Xiaoyu</au><au>Ma, Linxian</au><au>Peng, Wei</au><au>Wang, Yihua</au><au>Ren, Jie</au><au>Wang, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturization of the Superconducting Memory Cell via a Three-Dimensional Nb Nano-superconducting Quantum Interference Device</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-09-22</date><risdate>2020</risdate><volume>14</volume><issue>9</issue><spage>11002</spage><epage>11008</epage><pages>11002-11008</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Scalable memories that can match the speeds of superconducting logic circuits have long been desired to enable a superconducting computer. A superconducting loop that includes a Josephson junction can store a flux quantum state in picoseconds. However, the requirement for the loop inductance to create a bistate hysteresis sets a limit on the minimal area occupied by a single memory cell. Here, we present a miniaturized superconducting memory cell based on a three-dimensional (3D) Nb nano-superconducting quantum interference device (nano-SQUID). The major cell area here fits within an 8 × 9 μm2 rectangle with a cross-selected function for memory implementation. The cell shows periodic tunable hysteresis between two neighboring flux quantum states produced by bias current sweeping because of the large modulation depth of the 3D nano-SQUID (∼66%). Furthermore, the measured current-phase relations (CPRs) of nano-SQUIDs are shown to be skewed from a sine function, as predicted by theoretical modeling. The skewness and the critical current of 3D nano-SQUIDs are linearly correlated. It is also found that the hysteresis loop size is in a linear scaling relationship with the CPR skewness using the statistics from characterization of 26 devices. We show that the CPR skewness range of π/4–3π/4 is equivalent to a large loop inductance in creating a stable bistate hysteresis for memory implementation. Therefore, the skewed CPR of 3D nano-SQUID enables further superconducting memory cell miniaturization by overcoming the inductance limitation of the loop area.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c04405</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4746-5441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-09, Vol.14 (9), p.11002-11008
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2426535906
source American Chemical Society Journals
title Miniaturization of the Superconducting Memory Cell via a Three-Dimensional Nb Nano-superconducting Quantum Interference Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturization%20of%20the%20Superconducting%20Memory%20Cell%20via%20a%20Three-Dimensional%20Nb%20Nano-superconducting%20Quantum%20Interference%20Device&rft.jtitle=ACS%20nano&rft.au=Chen,%20Lei&rft.date=2020-09-22&rft.volume=14&rft.issue=9&rft.spage=11002&rft.epage=11008&rft.pages=11002-11008&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c04405&rft_dat=%3Cproquest_cross%3E2426535906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426535906&rft_id=info:pmid/&rfr_iscdi=true