Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer

Radiomics allows for mining of imaging data to examine tissue characteristics non-invasively, which can be used to predict the prognosis of a patient. This study explored the use of imaging techniques to evaluate splenic tissue characteristics to predict the prognosis of patients with gastric cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of surgical oncology 2020-10, Vol.46 (10), p.1932-1940
Hauptverfasser: Wang, Xiang, Sun, Jing, Zhang, Weiteng, Yang, Xinxin, Zhu, Ce, Pan, Bujian, Zeng, Yunpeng, Xu, Jingxuan, Chen, Xiaodong, Shen, Xian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1940
container_issue 10
container_start_page 1932
container_title European journal of surgical oncology
container_volume 46
creator Wang, Xiang
Sun, Jing
Zhang, Weiteng
Yang, Xinxin
Zhu, Ce
Pan, Bujian
Zeng, Yunpeng
Xu, Jingxuan
Chen, Xiaodong
Shen, Xian
description Radiomics allows for mining of imaging data to examine tissue characteristics non-invasively, which can be used to predict the prognosis of a patient. This study explored the use of imaging techniques to evaluate splenic tissue characteristics to predict the prognosis of patients with gastric cancer. Computed tomography images from patients with gastric cancer were collected retrospectively. Splenic image characteristics, extracted with pyradiomics, of patients in the training group were randomly divided. Characteristics with a P value 
doi_str_mv 10.1016/j.ejso.2020.06.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2426183737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S074879832030545X</els_id><sourcerecordid>2426183737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-759c5fd59b4a49034711b0324527172045ce61fefaf1d820235ad439196e54da3</originalsourceid><addsrcrecordid>eNp9kEtPIzEQhC0EgmzgD3BYzZHLzPo5jiUuCPFYCYkLOVuOpyc4SsazboeFf49Dwh5XfehDV5W6PkIuGW0YZe2vVQMrjA2nnDa0bShnR2TClOA1Z0ofkwnVclZrMxNn5AfiilJqhDan5Ezw1kiqxIS4OUIV-yq5LsRN8FjlWMF7Ts7nCsc1DMFXPbi8TfB1GxN0odzGFJdDxIA79-hygCFj9Tfk12rpMKdi827wkM7JSe_WCBeHPSXz-7uX28f66fnh9-3NU-2FanOtlfGq75RZSCcNFVIztqCCS8U105xK5aFlPfSuZ92sdBbKdVIYZlpQsnNiSq72ueWzP1vAbDcBPazXboC4Rcslb9lM6DJTwvdSnyJigt6OKWxc-rCM2h1au7I7tHaH1tLWFrTF9POQv11soPtn-WZZBNd7AZSWbwGSRV-o-MIrgc-2i-F_-Z_M64qL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426183737</pqid></control><display><type>article</type><title>Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Xiang ; Sun, Jing ; Zhang, Weiteng ; Yang, Xinxin ; Zhu, Ce ; Pan, Bujian ; Zeng, Yunpeng ; Xu, Jingxuan ; Chen, Xiaodong ; Shen, Xian</creator><creatorcontrib>Wang, Xiang ; Sun, Jing ; Zhang, Weiteng ; Yang, Xinxin ; Zhu, Ce ; Pan, Bujian ; Zeng, Yunpeng ; Xu, Jingxuan ; Chen, Xiaodong ; Shen, Xian</creatorcontrib><description>Radiomics allows for mining of imaging data to examine tissue characteristics non-invasively, which can be used to predict the prognosis of a patient. This study explored the use of imaging techniques to evaluate splenic tissue characteristics to predict the prognosis of patients with gastric cancer. Computed tomography images from patients with gastric cancer were collected retrospectively. Splenic image characteristics, extracted with pyradiomics, of patients in the training group were randomly divided. Characteristics with a P value &lt; 0.1 were selected for lasso regression to construct a survival risk model. Models for high-and low-risk groups were established. Patients were divided into the high- and low-risk groups for univariate and multivariate regression analysis of survival-related factors, and a visual prognostic prediction model was established. The splenic characteristic prognostic model was consistent in the training and verification groups (p &lt; 0.001 and p = 0.016, respectively). The two groups that displayed different splenic characteristics showed no statistical difference in other basic data except the tumour-node-metastasis (pTNM) stage (p = 0.007). Univariate and multivariate analysis of survival risk factors showed that splenic characteristics (p = 0.042), age (p &lt; 0.001), tumor location (p = 0.002), and pTNM stage (p &lt; 0.001) were independent risk factors for survival. The prognostic prediction model combined with splenic characteristics significantly improved the accuracy of prognosis, predicting one-and three-year survival rates. Splenic features extracted from imaging technology can accurately predict the long-term survival of patients with gastric cancer. Splenic characteristic grouping can effectively improve the accuracy of survival prediction and gastric cancer prognosis.</description><identifier>ISSN: 0748-7983</identifier><identifier>EISSN: 1532-2157</identifier><identifier>DOI: 10.1016/j.ejso.2020.06.021</identifier><identifier>PMID: 32694053</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Age Factors ; Aged ; Carcinoma - diagnostic imaging ; Carcinoma - pathology ; Carcinoma - surgery ; Computational Biology ; Female ; Gastrectomy ; Gastric cancer ; Humans ; Male ; Middle Aged ; Multivariate Analysis ; Neoplasm Staging ; Prognosis ; Pyloric Antrum - pathology ; Radiomics ; Spleen ; Spleen - diagnostic imaging ; Stomach Neoplasms - diagnostic imaging ; Stomach Neoplasms - pathology ; Stomach Neoplasms - surgery ; Survival ; Survival Rate ; Tomography, X-Ray Computed</subject><ispartof>European journal of surgical oncology, 2020-10, Vol.46 (10), p.1932-1940</ispartof><rights>2020 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology</rights><rights>Copyright © 2020 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-759c5fd59b4a49034711b0324527172045ce61fefaf1d820235ad439196e54da3</citedby><cites>FETCH-LOGICAL-c356t-759c5fd59b4a49034711b0324527172045ce61fefaf1d820235ad439196e54da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejso.2020.06.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32694053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Zhang, Weiteng</creatorcontrib><creatorcontrib>Yang, Xinxin</creatorcontrib><creatorcontrib>Zhu, Ce</creatorcontrib><creatorcontrib>Pan, Bujian</creatorcontrib><creatorcontrib>Zeng, Yunpeng</creatorcontrib><creatorcontrib>Xu, Jingxuan</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Shen, Xian</creatorcontrib><title>Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer</title><title>European journal of surgical oncology</title><addtitle>Eur J Surg Oncol</addtitle><description>Radiomics allows for mining of imaging data to examine tissue characteristics non-invasively, which can be used to predict the prognosis of a patient. This study explored the use of imaging techniques to evaluate splenic tissue characteristics to predict the prognosis of patients with gastric cancer. Computed tomography images from patients with gastric cancer were collected retrospectively. Splenic image characteristics, extracted with pyradiomics, of patients in the training group were randomly divided. Characteristics with a P value &lt; 0.1 were selected for lasso regression to construct a survival risk model. Models for high-and low-risk groups were established. Patients were divided into the high- and low-risk groups for univariate and multivariate regression analysis of survival-related factors, and a visual prognostic prediction model was established. The splenic characteristic prognostic model was consistent in the training and verification groups (p &lt; 0.001 and p = 0.016, respectively). The two groups that displayed different splenic characteristics showed no statistical difference in other basic data except the tumour-node-metastasis (pTNM) stage (p = 0.007). Univariate and multivariate analysis of survival risk factors showed that splenic characteristics (p = 0.042), age (p &lt; 0.001), tumor location (p = 0.002), and pTNM stage (p &lt; 0.001) were independent risk factors for survival. The prognostic prediction model combined with splenic characteristics significantly improved the accuracy of prognosis, predicting one-and three-year survival rates. Splenic features extracted from imaging technology can accurately predict the long-term survival of patients with gastric cancer. Splenic characteristic grouping can effectively improve the accuracy of survival prediction and gastric cancer prognosis.</description><subject>Age Factors</subject><subject>Aged</subject><subject>Carcinoma - diagnostic imaging</subject><subject>Carcinoma - pathology</subject><subject>Carcinoma - surgery</subject><subject>Computational Biology</subject><subject>Female</subject><subject>Gastrectomy</subject><subject>Gastric cancer</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>Neoplasm Staging</subject><subject>Prognosis</subject><subject>Pyloric Antrum - pathology</subject><subject>Radiomics</subject><subject>Spleen</subject><subject>Spleen - diagnostic imaging</subject><subject>Stomach Neoplasms - diagnostic imaging</subject><subject>Stomach Neoplasms - pathology</subject><subject>Stomach Neoplasms - surgery</subject><subject>Survival</subject><subject>Survival Rate</subject><subject>Tomography, X-Ray Computed</subject><issn>0748-7983</issn><issn>1532-2157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPIzEQhC0EgmzgD3BYzZHLzPo5jiUuCPFYCYkLOVuOpyc4SsazboeFf49Dwh5XfehDV5W6PkIuGW0YZe2vVQMrjA2nnDa0bShnR2TClOA1Z0ofkwnVclZrMxNn5AfiilJqhDan5Ezw1kiqxIS4OUIV-yq5LsRN8FjlWMF7Ts7nCsc1DMFXPbi8TfB1GxN0odzGFJdDxIA79-hygCFj9Tfk12rpMKdi827wkM7JSe_WCBeHPSXz-7uX28f66fnh9-3NU-2FanOtlfGq75RZSCcNFVIztqCCS8U105xK5aFlPfSuZ92sdBbKdVIYZlpQsnNiSq72ueWzP1vAbDcBPazXboC4Rcslb9lM6DJTwvdSnyJigt6OKWxc-rCM2h1au7I7tHaH1tLWFrTF9POQv11soPtn-WZZBNd7AZSWbwGSRV-o-MIrgc-2i-F_-Z_M64qL</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Wang, Xiang</creator><creator>Sun, Jing</creator><creator>Zhang, Weiteng</creator><creator>Yang, Xinxin</creator><creator>Zhu, Ce</creator><creator>Pan, Bujian</creator><creator>Zeng, Yunpeng</creator><creator>Xu, Jingxuan</creator><creator>Chen, Xiaodong</creator><creator>Shen, Xian</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202010</creationdate><title>Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer</title><author>Wang, Xiang ; Sun, Jing ; Zhang, Weiteng ; Yang, Xinxin ; Zhu, Ce ; Pan, Bujian ; Zeng, Yunpeng ; Xu, Jingxuan ; Chen, Xiaodong ; Shen, Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-759c5fd59b4a49034711b0324527172045ce61fefaf1d820235ad439196e54da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age Factors</topic><topic>Aged</topic><topic>Carcinoma - diagnostic imaging</topic><topic>Carcinoma - pathology</topic><topic>Carcinoma - surgery</topic><topic>Computational Biology</topic><topic>Female</topic><topic>Gastrectomy</topic><topic>Gastric cancer</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>Neoplasm Staging</topic><topic>Prognosis</topic><topic>Pyloric Antrum - pathology</topic><topic>Radiomics</topic><topic>Spleen</topic><topic>Spleen - diagnostic imaging</topic><topic>Stomach Neoplasms - diagnostic imaging</topic><topic>Stomach Neoplasms - pathology</topic><topic>Stomach Neoplasms - surgery</topic><topic>Survival</topic><topic>Survival Rate</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Zhang, Weiteng</creatorcontrib><creatorcontrib>Yang, Xinxin</creatorcontrib><creatorcontrib>Zhu, Ce</creatorcontrib><creatorcontrib>Pan, Bujian</creatorcontrib><creatorcontrib>Zeng, Yunpeng</creatorcontrib><creatorcontrib>Xu, Jingxuan</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Shen, Xian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of surgical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiang</au><au>Sun, Jing</au><au>Zhang, Weiteng</au><au>Yang, Xinxin</au><au>Zhu, Ce</au><au>Pan, Bujian</au><au>Zeng, Yunpeng</au><au>Xu, Jingxuan</au><au>Chen, Xiaodong</au><au>Shen, Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer</atitle><jtitle>European journal of surgical oncology</jtitle><addtitle>Eur J Surg Oncol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>46</volume><issue>10</issue><spage>1932</spage><epage>1940</epage><pages>1932-1940</pages><issn>0748-7983</issn><eissn>1532-2157</eissn><abstract>Radiomics allows for mining of imaging data to examine tissue characteristics non-invasively, which can be used to predict the prognosis of a patient. This study explored the use of imaging techniques to evaluate splenic tissue characteristics to predict the prognosis of patients with gastric cancer. Computed tomography images from patients with gastric cancer were collected retrospectively. Splenic image characteristics, extracted with pyradiomics, of patients in the training group were randomly divided. Characteristics with a P value &lt; 0.1 were selected for lasso regression to construct a survival risk model. Models for high-and low-risk groups were established. Patients were divided into the high- and low-risk groups for univariate and multivariate regression analysis of survival-related factors, and a visual prognostic prediction model was established. The splenic characteristic prognostic model was consistent in the training and verification groups (p &lt; 0.001 and p = 0.016, respectively). The two groups that displayed different splenic characteristics showed no statistical difference in other basic data except the tumour-node-metastasis (pTNM) stage (p = 0.007). Univariate and multivariate analysis of survival risk factors showed that splenic characteristics (p = 0.042), age (p &lt; 0.001), tumor location (p = 0.002), and pTNM stage (p &lt; 0.001) were independent risk factors for survival. The prognostic prediction model combined with splenic characteristics significantly improved the accuracy of prognosis, predicting one-and three-year survival rates. Splenic features extracted from imaging technology can accurately predict the long-term survival of patients with gastric cancer. Splenic characteristic grouping can effectively improve the accuracy of survival prediction and gastric cancer prognosis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32694053</pmid><doi>10.1016/j.ejso.2020.06.021</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-7983
ispartof European journal of surgical oncology, 2020-10, Vol.46 (10), p.1932-1940
issn 0748-7983
1532-2157
language eng
recordid cdi_proquest_miscellaneous_2426183737
source MEDLINE; Elsevier ScienceDirect Journals
subjects Age Factors
Aged
Carcinoma - diagnostic imaging
Carcinoma - pathology
Carcinoma - surgery
Computational Biology
Female
Gastrectomy
Gastric cancer
Humans
Male
Middle Aged
Multivariate Analysis
Neoplasm Staging
Prognosis
Pyloric Antrum - pathology
Radiomics
Spleen
Spleen - diagnostic imaging
Stomach Neoplasms - diagnostic imaging
Stomach Neoplasms - pathology
Stomach Neoplasms - surgery
Survival
Survival Rate
Tomography, X-Ray Computed
title Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20radiomics%20to%20extract%20splenic%20features%20to%20predict%20prognosis%20of%20patients%20with%20gastric%20cancer&rft.jtitle=European%20journal%20of%20surgical%20oncology&rft.au=Wang,%20Xiang&rft.date=2020-10&rft.volume=46&rft.issue=10&rft.spage=1932&rft.epage=1940&rft.pages=1932-1940&rft.issn=0748-7983&rft.eissn=1532-2157&rft_id=info:doi/10.1016/j.ejso.2020.06.021&rft_dat=%3Cproquest_cross%3E2426183737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426183737&rft_id=info:pmid/32694053&rft_els_id=S074879832030545X&rfr_iscdi=true