Phytochemical Study of Safflower Roots (Carthamus tinctorius) on the Induction of Parasitic Plant Germination and Weed Control

Weeds have been a major threat in agriculture for several generations as they lead to decreases in productivity and cause significant economic losses. Parasitic plants are a specific type of weed causing losses in crops of great relevance. A new strategy has emerged in the fight against parasitic pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical ecology 2020-09, Vol.46 (9), p.871-880
Hauptverfasser: Rial, Carlos, Tomé, Sonia, Varela, Rosa M., Molinillo, José M. G., Macías, Francisco A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 880
container_issue 9
container_start_page 871
container_title Journal of chemical ecology
container_volume 46
creator Rial, Carlos
Tomé, Sonia
Varela, Rosa M.
Molinillo, José M. G.
Macías, Francisco A.
description Weeds have been a major threat in agriculture for several generations as they lead to decreases in productivity and cause significant economic losses. Parasitic plants are a specific type of weed causing losses in crops of great relevance. A new strategy has emerged in the fight against parasitic plants, which is called ‘suicidal germination’ or the ‘honey-pot strategy’. Regarding the problem of weed control from an ecological point of view, it is interesting to investigate new natural compounds with allelopathic activity with the aim of developing new natural herbicides that can inhibit the growth of weeds without damaging the environment. Safflower crops have been affected by parasitic plants and weeds and, as a consequence, the secondary metabolites exuded by safflower roots have been studied. The sesquiterpene lactone dehydrocostuslactone was isolated and characterised, and the structurally related costunolide was identified by UHPLC-MS/MS in safflower root exudates. These sesquiterpene lactones have been shown to stimulate germination of Phelipanche ramosa and Orobanche cumana seeds . In addition, these compounds were phytotoxic on three important weeds in agriculture, namely Lolium perenne , Lolium rigidum and Echinochloa crus-galli. The exudation of the strigolactones solanacol and fabacyl acetate have also been confirmed by UHPLC-MS/MS. The study reported here contributes to our knowledge of the ecological role played by some secondary metabolites. Moreover, this knowledge could help identify new models for the development of future agrochemicals based on natural products.
doi_str_mv 10.1007/s10886-020-01200-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2425898575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425898575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-623b432cde9b0a2c4d43ac8b489ee9b16c82d3e0db9de7e6c9f2fe40f606be283</originalsourceid><addsrcrecordid>eNp9kcFqFTEUhoMo9lp9ARcScFMXoyfJTCazlIvWQsGLVVyGTHLGmzKT1CRDuRuf3dhbFVy4Csn5_j8HPkKeM3jNAPo3mYFSsgEODTAO0PQPyIZ1vWhYJ9lDsgEYVANCsBPyJOdrAOBSdY_JieByYKLnG_Jjtz-UaPe4eGtmelVWd6BxoldmmuZ4i4l-irFkerY1qezNsmZafLAlJr_mVzQGWvZIL4JbbfH1VqM7k0z2xVu6m00o9BzT4oO5G5vg6FdER7cxlBTnp-TRZOaMz-7PU_Ll_bvP2w_N5cfzi-3by8aKviuN5GJsBbcOhxEMt61rhbFqbNWA9YlJq7gTCG4cHPYo7TDxCVuYJMgRuRKn5OzYe5Pi9xVz0YvPFue6IMY1a97yTg2q67uKvvwHvY5rCnW7SolBtq0UvFL8SNkUc0446ZvkF5MOmoH-ZUcf7ehqR9_Z0X0NvbivXscF3Z_Ibx0VEEcg11H4hunv3_-p_QmjaJvV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439644632</pqid></control><display><type>article</type><title>Phytochemical Study of Safflower Roots (Carthamus tinctorius) on the Induction of Parasitic Plant Germination and Weed Control</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Rial, Carlos ; Tomé, Sonia ; Varela, Rosa M. ; Molinillo, José M. G. ; Macías, Francisco A.</creator><creatorcontrib>Rial, Carlos ; Tomé, Sonia ; Varela, Rosa M. ; Molinillo, José M. G. ; Macías, Francisco A.</creatorcontrib><description>Weeds have been a major threat in agriculture for several generations as they lead to decreases in productivity and cause significant economic losses. Parasitic plants are a specific type of weed causing losses in crops of great relevance. A new strategy has emerged in the fight against parasitic plants, which is called ‘suicidal germination’ or the ‘honey-pot strategy’. Regarding the problem of weed control from an ecological point of view, it is interesting to investigate new natural compounds with allelopathic activity with the aim of developing new natural herbicides that can inhibit the growth of weeds without damaging the environment. Safflower crops have been affected by parasitic plants and weeds and, as a consequence, the secondary metabolites exuded by safflower roots have been studied. The sesquiterpene lactone dehydrocostuslactone was isolated and characterised, and the structurally related costunolide was identified by UHPLC-MS/MS in safflower root exudates. These sesquiterpene lactones have been shown to stimulate germination of Phelipanche ramosa and Orobanche cumana seeds . In addition, these compounds were phytotoxic on three important weeds in agriculture, namely Lolium perenne , Lolium rigidum and Echinochloa crus-galli. The exudation of the strigolactones solanacol and fabacyl acetate have also been confirmed by UHPLC-MS/MS. The study reported here contributes to our knowledge of the ecological role played by some secondary metabolites. Moreover, this knowledge could help identify new models for the development of future agrochemicals based on natural products.</description><identifier>ISSN: 0098-0331</identifier><identifier>EISSN: 1573-1561</identifier><identifier>DOI: 10.1007/s10886-020-01200-7</identifier><identifier>PMID: 32691372</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject><![CDATA[Acetic acid ; Agriculture ; Agrochemicals ; Allelopathy ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Carthamus tinctorius ; Carthamus tinctorius - parasitology ; Chromatography, Liquid ; Crops ; Ecology ; Economic impact ; Entomology ; Exudates ; Exudation ; Germination ; Germination - drug effects ; Herbicides ; Lactones ; Lactones - isolation & purification ; Lactones - pharmacology ; Life Sciences ; Lolium - drug effects ; Lolium - growth & development ; Metabolites ; Natural products ; Orobanche - drug effects ; Orobanche - growth & development ; Parasitic plants ; Plant Extracts - isolation & purification ; Plant Extracts - pharmacology ; Plant Exudates - isolation & purification ; Plant Exudates - pharmacology ; Plant Roots - chemistry ; Plant Roots - parasitology ; Plant Weeds - drug effects ; Roots ; Secondary metabolites ; Seeds ; Seeds - drug effects ; Sesquiterpene lactones ; Sesquiterpenes - isolation & purification ; Sesquiterpenes - pharmacology ; Tandem Mass Spectrometry ; Weed control ; Weed Control - methods ; Weeds]]></subject><ispartof>Journal of chemical ecology, 2020-09, Vol.46 (9), p.871-880</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-623b432cde9b0a2c4d43ac8b489ee9b16c82d3e0db9de7e6c9f2fe40f606be283</citedby><cites>FETCH-LOGICAL-c375t-623b432cde9b0a2c4d43ac8b489ee9b16c82d3e0db9de7e6c9f2fe40f606be283</cites><orcidid>0000-0003-3616-9134 ; 0000-0002-7844-9401 ; 0000-0001-8862-2864 ; 0000-0002-0265-9584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10886-020-01200-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10886-020-01200-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32691372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rial, Carlos</creatorcontrib><creatorcontrib>Tomé, Sonia</creatorcontrib><creatorcontrib>Varela, Rosa M.</creatorcontrib><creatorcontrib>Molinillo, José M. G.</creatorcontrib><creatorcontrib>Macías, Francisco A.</creatorcontrib><title>Phytochemical Study of Safflower Roots (Carthamus tinctorius) on the Induction of Parasitic Plant Germination and Weed Control</title><title>Journal of chemical ecology</title><addtitle>J Chem Ecol</addtitle><addtitle>J Chem Ecol</addtitle><description>Weeds have been a major threat in agriculture for several generations as they lead to decreases in productivity and cause significant economic losses. Parasitic plants are a specific type of weed causing losses in crops of great relevance. A new strategy has emerged in the fight against parasitic plants, which is called ‘suicidal germination’ or the ‘honey-pot strategy’. Regarding the problem of weed control from an ecological point of view, it is interesting to investigate new natural compounds with allelopathic activity with the aim of developing new natural herbicides that can inhibit the growth of weeds without damaging the environment. Safflower crops have been affected by parasitic plants and weeds and, as a consequence, the secondary metabolites exuded by safflower roots have been studied. The sesquiterpene lactone dehydrocostuslactone was isolated and characterised, and the structurally related costunolide was identified by UHPLC-MS/MS in safflower root exudates. These sesquiterpene lactones have been shown to stimulate germination of Phelipanche ramosa and Orobanche cumana seeds . In addition, these compounds were phytotoxic on three important weeds in agriculture, namely Lolium perenne , Lolium rigidum and Echinochloa crus-galli. The exudation of the strigolactones solanacol and fabacyl acetate have also been confirmed by UHPLC-MS/MS. The study reported here contributes to our knowledge of the ecological role played by some secondary metabolites. Moreover, this knowledge could help identify new models for the development of future agrochemicals based on natural products.</description><subject>Acetic acid</subject><subject>Agriculture</subject><subject>Agrochemicals</subject><subject>Allelopathy</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Carthamus tinctorius</subject><subject>Carthamus tinctorius - parasitology</subject><subject>Chromatography, Liquid</subject><subject>Crops</subject><subject>Ecology</subject><subject>Economic impact</subject><subject>Entomology</subject><subject>Exudates</subject><subject>Exudation</subject><subject>Germination</subject><subject>Germination - drug effects</subject><subject>Herbicides</subject><subject>Lactones</subject><subject>Lactones - isolation &amp; purification</subject><subject>Lactones - pharmacology</subject><subject>Life Sciences</subject><subject>Lolium - drug effects</subject><subject>Lolium - growth &amp; development</subject><subject>Metabolites</subject><subject>Natural products</subject><subject>Orobanche - drug effects</subject><subject>Orobanche - growth &amp; development</subject><subject>Parasitic plants</subject><subject>Plant Extracts - isolation &amp; purification</subject><subject>Plant Extracts - pharmacology</subject><subject>Plant Exudates - isolation &amp; purification</subject><subject>Plant Exudates - pharmacology</subject><subject>Plant Roots - chemistry</subject><subject>Plant Roots - parasitology</subject><subject>Plant Weeds - drug effects</subject><subject>Roots</subject><subject>Secondary metabolites</subject><subject>Seeds</subject><subject>Seeds - drug effects</subject><subject>Sesquiterpene lactones</subject><subject>Sesquiterpenes - isolation &amp; purification</subject><subject>Sesquiterpenes - pharmacology</subject><subject>Tandem Mass Spectrometry</subject><subject>Weed control</subject><subject>Weed Control - methods</subject><subject>Weeds</subject><issn>0098-0331</issn><issn>1573-1561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFqFTEUhoMo9lp9ARcScFMXoyfJTCazlIvWQsGLVVyGTHLGmzKT1CRDuRuf3dhbFVy4Csn5_j8HPkKeM3jNAPo3mYFSsgEODTAO0PQPyIZ1vWhYJ9lDsgEYVANCsBPyJOdrAOBSdY_JieByYKLnG_Jjtz-UaPe4eGtmelVWd6BxoldmmuZ4i4l-irFkerY1qezNsmZafLAlJr_mVzQGWvZIL4JbbfH1VqM7k0z2xVu6m00o9BzT4oO5G5vg6FdER7cxlBTnp-TRZOaMz-7PU_Ll_bvP2w_N5cfzi-3by8aKviuN5GJsBbcOhxEMt61rhbFqbNWA9YlJq7gTCG4cHPYo7TDxCVuYJMgRuRKn5OzYe5Pi9xVz0YvPFue6IMY1a97yTg2q67uKvvwHvY5rCnW7SolBtq0UvFL8SNkUc0446ZvkF5MOmoH-ZUcf7ehqR9_Z0X0NvbivXscF3Z_Ibx0VEEcg11H4hunv3_-p_QmjaJvV</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Rial, Carlos</creator><creator>Tomé, Sonia</creator><creator>Varela, Rosa M.</creator><creator>Molinillo, José M. G.</creator><creator>Macías, Francisco A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3616-9134</orcidid><orcidid>https://orcid.org/0000-0002-7844-9401</orcidid><orcidid>https://orcid.org/0000-0001-8862-2864</orcidid><orcidid>https://orcid.org/0000-0002-0265-9584</orcidid></search><sort><creationdate>20200901</creationdate><title>Phytochemical Study of Safflower Roots (Carthamus tinctorius) on the Induction of Parasitic Plant Germination and Weed Control</title><author>Rial, Carlos ; Tomé, Sonia ; Varela, Rosa M. ; Molinillo, José M. G. ; Macías, Francisco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-623b432cde9b0a2c4d43ac8b489ee9b16c82d3e0db9de7e6c9f2fe40f606be283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Agriculture</topic><topic>Agrochemicals</topic><topic>Allelopathy</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Carthamus tinctorius</topic><topic>Carthamus tinctorius - parasitology</topic><topic>Chromatography, Liquid</topic><topic>Crops</topic><topic>Ecology</topic><topic>Economic impact</topic><topic>Entomology</topic><topic>Exudates</topic><topic>Exudation</topic><topic>Germination</topic><topic>Germination - drug effects</topic><topic>Herbicides</topic><topic>Lactones</topic><topic>Lactones - isolation &amp; purification</topic><topic>Lactones - pharmacology</topic><topic>Life Sciences</topic><topic>Lolium - drug effects</topic><topic>Lolium - growth &amp; development</topic><topic>Metabolites</topic><topic>Natural products</topic><topic>Orobanche - drug effects</topic><topic>Orobanche - growth &amp; development</topic><topic>Parasitic plants</topic><topic>Plant Extracts - isolation &amp; purification</topic><topic>Plant Extracts - pharmacology</topic><topic>Plant Exudates - isolation &amp; purification</topic><topic>Plant Exudates - pharmacology</topic><topic>Plant Roots - chemistry</topic><topic>Plant Roots - parasitology</topic><topic>Plant Weeds - drug effects</topic><topic>Roots</topic><topic>Secondary metabolites</topic><topic>Seeds</topic><topic>Seeds - drug effects</topic><topic>Sesquiterpene lactones</topic><topic>Sesquiterpenes - isolation &amp; purification</topic><topic>Sesquiterpenes - pharmacology</topic><topic>Tandem Mass Spectrometry</topic><topic>Weed control</topic><topic>Weed Control - methods</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rial, Carlos</creatorcontrib><creatorcontrib>Tomé, Sonia</creatorcontrib><creatorcontrib>Varela, Rosa M.</creatorcontrib><creatorcontrib>Molinillo, José M. G.</creatorcontrib><creatorcontrib>Macías, Francisco A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rial, Carlos</au><au>Tomé, Sonia</au><au>Varela, Rosa M.</au><au>Molinillo, José M. G.</au><au>Macías, Francisco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytochemical Study of Safflower Roots (Carthamus tinctorius) on the Induction of Parasitic Plant Germination and Weed Control</atitle><jtitle>Journal of chemical ecology</jtitle><stitle>J Chem Ecol</stitle><addtitle>J Chem Ecol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>46</volume><issue>9</issue><spage>871</spage><epage>880</epage><pages>871-880</pages><issn>0098-0331</issn><eissn>1573-1561</eissn><abstract>Weeds have been a major threat in agriculture for several generations as they lead to decreases in productivity and cause significant economic losses. Parasitic plants are a specific type of weed causing losses in crops of great relevance. A new strategy has emerged in the fight against parasitic plants, which is called ‘suicidal germination’ or the ‘honey-pot strategy’. Regarding the problem of weed control from an ecological point of view, it is interesting to investigate new natural compounds with allelopathic activity with the aim of developing new natural herbicides that can inhibit the growth of weeds without damaging the environment. Safflower crops have been affected by parasitic plants and weeds and, as a consequence, the secondary metabolites exuded by safflower roots have been studied. The sesquiterpene lactone dehydrocostuslactone was isolated and characterised, and the structurally related costunolide was identified by UHPLC-MS/MS in safflower root exudates. These sesquiterpene lactones have been shown to stimulate germination of Phelipanche ramosa and Orobanche cumana seeds . In addition, these compounds were phytotoxic on three important weeds in agriculture, namely Lolium perenne , Lolium rigidum and Echinochloa crus-galli. The exudation of the strigolactones solanacol and fabacyl acetate have also been confirmed by UHPLC-MS/MS. The study reported here contributes to our knowledge of the ecological role played by some secondary metabolites. Moreover, this knowledge could help identify new models for the development of future agrochemicals based on natural products.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32691372</pmid><doi>10.1007/s10886-020-01200-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3616-9134</orcidid><orcidid>https://orcid.org/0000-0002-7844-9401</orcidid><orcidid>https://orcid.org/0000-0001-8862-2864</orcidid><orcidid>https://orcid.org/0000-0002-0265-9584</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-0331
ispartof Journal of chemical ecology, 2020-09, Vol.46 (9), p.871-880
issn 0098-0331
1573-1561
language eng
recordid cdi_proquest_miscellaneous_2425898575
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Acetic acid
Agriculture
Agrochemicals
Allelopathy
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Carthamus tinctorius
Carthamus tinctorius - parasitology
Chromatography, Liquid
Crops
Ecology
Economic impact
Entomology
Exudates
Exudation
Germination
Germination - drug effects
Herbicides
Lactones
Lactones - isolation & purification
Lactones - pharmacology
Life Sciences
Lolium - drug effects
Lolium - growth & development
Metabolites
Natural products
Orobanche - drug effects
Orobanche - growth & development
Parasitic plants
Plant Extracts - isolation & purification
Plant Extracts - pharmacology
Plant Exudates - isolation & purification
Plant Exudates - pharmacology
Plant Roots - chemistry
Plant Roots - parasitology
Plant Weeds - drug effects
Roots
Secondary metabolites
Seeds
Seeds - drug effects
Sesquiterpene lactones
Sesquiterpenes - isolation & purification
Sesquiterpenes - pharmacology
Tandem Mass Spectrometry
Weed control
Weed Control - methods
Weeds
title Phytochemical Study of Safflower Roots (Carthamus tinctorius) on the Induction of Parasitic Plant Germination and Weed Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytochemical%20Study%20of%20Safflower%20Roots%20(Carthamus%20tinctorius)%20on%20the%20Induction%20of%20Parasitic%20Plant%20Germination%20and%20Weed%20Control&rft.jtitle=Journal%20of%20chemical%20ecology&rft.au=Rial,%20Carlos&rft.date=2020-09-01&rft.volume=46&rft.issue=9&rft.spage=871&rft.epage=880&rft.pages=871-880&rft.issn=0098-0331&rft.eissn=1573-1561&rft_id=info:doi/10.1007/s10886-020-01200-7&rft_dat=%3Cproquest_cross%3E2425898575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439644632&rft_id=info:pmid/32691372&rfr_iscdi=true