Complementary contributions of non-REM and REM sleep to visual learning

Sleep is beneficial for learning. However, it remains unclear whether learning is facilitated by non-rapid eye movement (NREM) sleep or by REM sleep, whether it results from plasticity increases or stabilization, and whether facilitation results from learning-specific processing. Here, we trained vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2020-09, Vol.23 (9), p.1150-1156
Hauptverfasser: Tamaki, Masako, Wang, Zhiyan, Barnes-Diana, Tyler, Guo, DeeAnn, Berard, Aaron V., Walsh, Edward, Watanabe, Takeo, Sasaki, Yuka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1156
container_issue 9
container_start_page 1150
container_title Nature neuroscience
container_volume 23
creator Tamaki, Masako
Wang, Zhiyan
Barnes-Diana, Tyler
Guo, DeeAnn
Berard, Aaron V.
Walsh, Edward
Watanabe, Takeo
Sasaki, Yuka
description Sleep is beneficial for learning. However, it remains unclear whether learning is facilitated by non-rapid eye movement (NREM) sleep or by REM sleep, whether it results from plasticity increases or stabilization, and whether facilitation results from learning-specific processing. Here, we trained volunteers on a visual task and measured the excitatory and inhibitory (E/I) balance in early visual areas during subsequent sleep as an index of plasticity. The E/I balance increased during NREM sleep irrespective of whether pre-sleep learning occurred, but it was associated with post-sleep performance gains relative to pre-sleep performance. In contrast, the E/I balance decreased during REM sleep but only after pre-sleep training, and the decrease was associated with stabilization of pre-sleep learning. These findings indicate that NREM sleep promotes plasticity, leading to performance gains independent of learning, while REM sleep decreases plasticity to stabilize learning in a learning-specific manner. Tamaki et al. measured MRS changes in sleeping humans trained on a visual task. During NREM sleep, learning gains were associated with enhanced visual cortical plasticity that was also seen independent of learning. REM sleep stabilized plasticity only after pre-sleep learning.
doi_str_mv 10.1038/s41593-020-0666-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2425894612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633664466</galeid><sourcerecordid>A633664466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-69166a909f8365093b67ceced8b5b140049ae966260e992945986ab099608a983</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS1ERUvhA3BBkbjAwcX_MrGP1aqUSq0qFThbTnaycpXYi51U7LfH0RaqRVQ-jGX_3rNnHiHvODvjTOrPWfHaSMoEowwA6O4FOeG1AsobAS_LnpmGgqjhmLzO-Z4x1tTavCLHUoBhBvQJuVzFcTvgiGFyaVd1MUzJt_PkY8hV7KsQA727uKlcWFdLzQPitppi9eDz7IZqQJeCD5s35Kh3Q8a3j_WU_Phy8X31lV7fXl6tzq9pV2sxUTAcwJW3ey2hZka20HTY4Vq3dcsVY8o4NAACGBojjKqNBtcyY4BpZ7Q8JR_3vtsUf86YJzv63OEwuIBxzlYoUVpUwEVBP_yD3sc5hfK7QslGNA1o9kRt3IDWhz5OyXWLqT0HKQGUAijU2X-ostY4-jI07H05PxB8OhAsg8Vf08bNOdurb3eHLN-zXYo5J-ztNvmxxGE5s0vQdh-0LUHbJWi7K5r3j83N7Yjrv4o_yRZA7IFcrsIG01P3z7v-Bqlxrok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437277680</pqid></control><display><type>article</type><title>Complementary contributions of non-REM and REM sleep to visual learning</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Tamaki, Masako ; Wang, Zhiyan ; Barnes-Diana, Tyler ; Guo, DeeAnn ; Berard, Aaron V. ; Walsh, Edward ; Watanabe, Takeo ; Sasaki, Yuka</creator><creatorcontrib>Tamaki, Masako ; Wang, Zhiyan ; Barnes-Diana, Tyler ; Guo, DeeAnn ; Berard, Aaron V. ; Walsh, Edward ; Watanabe, Takeo ; Sasaki, Yuka</creatorcontrib><description>Sleep is beneficial for learning. However, it remains unclear whether learning is facilitated by non-rapid eye movement (NREM) sleep or by REM sleep, whether it results from plasticity increases or stabilization, and whether facilitation results from learning-specific processing. Here, we trained volunteers on a visual task and measured the excitatory and inhibitory (E/I) balance in early visual areas during subsequent sleep as an index of plasticity. The E/I balance increased during NREM sleep irrespective of whether pre-sleep learning occurred, but it was associated with post-sleep performance gains relative to pre-sleep performance. In contrast, the E/I balance decreased during REM sleep but only after pre-sleep training, and the decrease was associated with stabilization of pre-sleep learning. These findings indicate that NREM sleep promotes plasticity, leading to performance gains independent of learning, while REM sleep decreases plasticity to stabilize learning in a learning-specific manner. Tamaki et al. measured MRS changes in sleeping humans trained on a visual task. During NREM sleep, learning gains were associated with enhanced visual cortical plasticity that was also seen independent of learning. REM sleep stabilized plasticity only after pre-sleep learning.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-020-0666-y</identifier><identifier>PMID: 32690968</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>59/57 ; 631/378/1385/1817 ; 631/378/1385/2641 ; 631/378/1385/519 ; 631/378/1595/2638 ; 631/378/3917 ; Adult ; Animal Genetics and Genomics ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Female ; Health aspects ; Humans ; Learning ; Male ; Neurobiology ; Neuronal Plasticity - physiology ; Neuroplasticity ; Neurosciences ; NREM sleep ; Photic Stimulation ; Physiological aspects ; REM sleep ; Sleep ; Sleep - physiology ; Sleep, REM - physiology ; Spatial Learning - physiology ; Stabilization ; Visual discrimination learning ; Visual learning ; Visual plasticity ; Visual tasks</subject><ispartof>Nature neuroscience, 2020-09, Vol.23 (9), p.1150-1156</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-69166a909f8365093b67ceced8b5b140049ae966260e992945986ab099608a983</citedby><cites>FETCH-LOGICAL-c582t-69166a909f8365093b67ceced8b5b140049ae966260e992945986ab099608a983</cites><orcidid>0000-0002-0061-0250 ; 0000-0002-4562-5376 ; 0000-0003-0099-5362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-020-0666-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-020-0666-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32690968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamaki, Masako</creatorcontrib><creatorcontrib>Wang, Zhiyan</creatorcontrib><creatorcontrib>Barnes-Diana, Tyler</creatorcontrib><creatorcontrib>Guo, DeeAnn</creatorcontrib><creatorcontrib>Berard, Aaron V.</creatorcontrib><creatorcontrib>Walsh, Edward</creatorcontrib><creatorcontrib>Watanabe, Takeo</creatorcontrib><creatorcontrib>Sasaki, Yuka</creatorcontrib><title>Complementary contributions of non-REM and REM sleep to visual learning</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Sleep is beneficial for learning. However, it remains unclear whether learning is facilitated by non-rapid eye movement (NREM) sleep or by REM sleep, whether it results from plasticity increases or stabilization, and whether facilitation results from learning-specific processing. Here, we trained volunteers on a visual task and measured the excitatory and inhibitory (E/I) balance in early visual areas during subsequent sleep as an index of plasticity. The E/I balance increased during NREM sleep irrespective of whether pre-sleep learning occurred, but it was associated with post-sleep performance gains relative to pre-sleep performance. In contrast, the E/I balance decreased during REM sleep but only after pre-sleep training, and the decrease was associated with stabilization of pre-sleep learning. These findings indicate that NREM sleep promotes plasticity, leading to performance gains independent of learning, while REM sleep decreases plasticity to stabilize learning in a learning-specific manner. Tamaki et al. measured MRS changes in sleeping humans trained on a visual task. During NREM sleep, learning gains were associated with enhanced visual cortical plasticity that was also seen independent of learning. REM sleep stabilized plasticity only after pre-sleep learning.</description><subject>59/57</subject><subject>631/378/1385/1817</subject><subject>631/378/1385/2641</subject><subject>631/378/1385/519</subject><subject>631/378/1595/2638</subject><subject>631/378/3917</subject><subject>Adult</subject><subject>Animal Genetics and Genomics</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Female</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Learning</subject><subject>Male</subject><subject>Neurobiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>NREM sleep</subject><subject>Photic Stimulation</subject><subject>Physiological aspects</subject><subject>REM sleep</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep, REM - physiology</subject><subject>Spatial Learning - physiology</subject><subject>Stabilization</subject><subject>Visual discrimination learning</subject><subject>Visual learning</subject><subject>Visual plasticity</subject><subject>Visual tasks</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9v1DAQxS1ERUvhA3BBkbjAwcX_MrGP1aqUSq0qFThbTnaycpXYi51U7LfH0RaqRVQ-jGX_3rNnHiHvODvjTOrPWfHaSMoEowwA6O4FOeG1AsobAS_LnpmGgqjhmLzO-Z4x1tTavCLHUoBhBvQJuVzFcTvgiGFyaVd1MUzJt_PkY8hV7KsQA727uKlcWFdLzQPitppi9eDz7IZqQJeCD5s35Kh3Q8a3j_WU_Phy8X31lV7fXl6tzq9pV2sxUTAcwJW3ey2hZka20HTY4Vq3dcsVY8o4NAACGBojjKqNBtcyY4BpZ7Q8JR_3vtsUf86YJzv63OEwuIBxzlYoUVpUwEVBP_yD3sc5hfK7QslGNA1o9kRt3IDWhz5OyXWLqT0HKQGUAijU2X-ostY4-jI07H05PxB8OhAsg8Vf08bNOdurb3eHLN-zXYo5J-ztNvmxxGE5s0vQdh-0LUHbJWi7K5r3j83N7Yjrv4o_yRZA7IFcrsIG01P3z7v-Bqlxrok</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Tamaki, Masako</creator><creator>Wang, Zhiyan</creator><creator>Barnes-Diana, Tyler</creator><creator>Guo, DeeAnn</creator><creator>Berard, Aaron V.</creator><creator>Walsh, Edward</creator><creator>Watanabe, Takeo</creator><creator>Sasaki, Yuka</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0061-0250</orcidid><orcidid>https://orcid.org/0000-0002-4562-5376</orcidid><orcidid>https://orcid.org/0000-0003-0099-5362</orcidid></search><sort><creationdate>20200901</creationdate><title>Complementary contributions of non-REM and REM sleep to visual learning</title><author>Tamaki, Masako ; Wang, Zhiyan ; Barnes-Diana, Tyler ; Guo, DeeAnn ; Berard, Aaron V. ; Walsh, Edward ; Watanabe, Takeo ; Sasaki, Yuka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-69166a909f8365093b67ceced8b5b140049ae966260e992945986ab099608a983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>59/57</topic><topic>631/378/1385/1817</topic><topic>631/378/1385/2641</topic><topic>631/378/1385/519</topic><topic>631/378/1595/2638</topic><topic>631/378/3917</topic><topic>Adult</topic><topic>Animal Genetics and Genomics</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Female</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Learning</topic><topic>Male</topic><topic>Neurobiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>NREM sleep</topic><topic>Photic Stimulation</topic><topic>Physiological aspects</topic><topic>REM sleep</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep, REM - physiology</topic><topic>Spatial Learning - physiology</topic><topic>Stabilization</topic><topic>Visual discrimination learning</topic><topic>Visual learning</topic><topic>Visual plasticity</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamaki, Masako</creatorcontrib><creatorcontrib>Wang, Zhiyan</creatorcontrib><creatorcontrib>Barnes-Diana, Tyler</creatorcontrib><creatorcontrib>Guo, DeeAnn</creatorcontrib><creatorcontrib>Berard, Aaron V.</creatorcontrib><creatorcontrib>Walsh, Edward</creatorcontrib><creatorcontrib>Watanabe, Takeo</creatorcontrib><creatorcontrib>Sasaki, Yuka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamaki, Masako</au><au>Wang, Zhiyan</au><au>Barnes-Diana, Tyler</au><au>Guo, DeeAnn</au><au>Berard, Aaron V.</au><au>Walsh, Edward</au><au>Watanabe, Takeo</au><au>Sasaki, Yuka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complementary contributions of non-REM and REM sleep to visual learning</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>23</volume><issue>9</issue><spage>1150</spage><epage>1156</epage><pages>1150-1156</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>Sleep is beneficial for learning. However, it remains unclear whether learning is facilitated by non-rapid eye movement (NREM) sleep or by REM sleep, whether it results from plasticity increases or stabilization, and whether facilitation results from learning-specific processing. Here, we trained volunteers on a visual task and measured the excitatory and inhibitory (E/I) balance in early visual areas during subsequent sleep as an index of plasticity. The E/I balance increased during NREM sleep irrespective of whether pre-sleep learning occurred, but it was associated with post-sleep performance gains relative to pre-sleep performance. In contrast, the E/I balance decreased during REM sleep but only after pre-sleep training, and the decrease was associated with stabilization of pre-sleep learning. These findings indicate that NREM sleep promotes plasticity, leading to performance gains independent of learning, while REM sleep decreases plasticity to stabilize learning in a learning-specific manner. Tamaki et al. measured MRS changes in sleeping humans trained on a visual task. During NREM sleep, learning gains were associated with enhanced visual cortical plasticity that was also seen independent of learning. REM sleep stabilized plasticity only after pre-sleep learning.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32690968</pmid><doi>10.1038/s41593-020-0666-y</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0061-0250</orcidid><orcidid>https://orcid.org/0000-0002-4562-5376</orcidid><orcidid>https://orcid.org/0000-0003-0099-5362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2020-09, Vol.23 (9), p.1150-1156
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_2425894612
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 59/57
631/378/1385/1817
631/378/1385/2641
631/378/1385/519
631/378/1595/2638
631/378/3917
Adult
Animal Genetics and Genomics
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain - physiology
Female
Health aspects
Humans
Learning
Male
Neurobiology
Neuronal Plasticity - physiology
Neuroplasticity
Neurosciences
NREM sleep
Photic Stimulation
Physiological aspects
REM sleep
Sleep
Sleep - physiology
Sleep, REM - physiology
Spatial Learning - physiology
Stabilization
Visual discrimination learning
Visual learning
Visual plasticity
Visual tasks
title Complementary contributions of non-REM and REM sleep to visual learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complementary%20contributions%20of%20non-REM%20and%20REM%20sleep%20to%20visual%20learning&rft.jtitle=Nature%20neuroscience&rft.au=Tamaki,%20Masako&rft.date=2020-09-01&rft.volume=23&rft.issue=9&rft.spage=1150&rft.epage=1156&rft.pages=1150-1156&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-020-0666-y&rft_dat=%3Cgale_proqu%3EA633664466%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437277680&rft_id=info:pmid/32690968&rft_galeid=A633664466&rfr_iscdi=true