An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly

In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-10, Vol.59 (43), p.19095-19101
Hauptverfasser: Zhong, Yang, Xu, Yan, Ma, Jun, Wang, Cheng, Sheng, Siyu, Cheng, Congtian, Li, Mengxuan, Han, Lu, Zhou, Linlin, Cai, Zhao, Kuang, Yun, Liang, Zheng, Sun, Xiaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19101
container_issue 43
container_start_page 19095
container_title Angewandte Chemie International Edition
container_volume 59
creator Zhong, Yang
Xu, Yan
Ma, Jun
Wang, Cheng
Sheng, Siyu
Cheng, Congtian
Li, Mengxuan
Han, Lu
Zhou, Linlin
Cai, Zhao
Kuang, Yun
Liang, Zheng
Sun, Xiaoming
description In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 permeability, promotes CO2 transportation and hydrogenation, as well as suppresses the hydrogen evolution reaction (HER). Linear and branched surfactants facilitated formic acid and CO production, respectively. Molecular dynamics simulations show that the artificial interface provided a facile CO2 diffusion pathway. Moreover, density‐functional theory (DFT) calculations revealed the stabilization of the key intermediate, OCHO*, through interactions with R4N+. This strategy might also be applicable to other electrocatalytic reactions where gas consumption is involved. An artificial quaternary ammonium cation (R4N+) surfactant electrode/electrolyte (E/E) interface construction strategy changes the CO2 reduction reaction (CO2RR) pathway. Molecular dynamics simulations indicate that the artificial interface provided a facile CO2 diffusion pathway. DFT calculations revealed the stabilization of the key intermediates through interactions with R4N+.
doi_str_mv 10.1002/anie.202005522
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2425595987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425595987</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2182-ab3fa091b8e8ce370515281106405827d72f658f9f8e13d1b527cbc99acb3cee3</originalsourceid><addsrcrecordid>eNpd0L1OwzAUBWALgUQprMyWWFjS-idunDGKClSq6FCYLce5RiluUpxEKBuPwDPyJLhQOjD5WPp0de9B6JqSCSWETXVdwYQRRogQjJ2gERWMRjxJ-GnIMedRIgU9RxdtuwleSjIbodesxpnvKluZSjs8d2A635QwPSQ3dIAXdQfeagPYNh7nK_bnPJS96aqmxsWAc_2T1v2edrru8Bqc_fr4zNoWtoUbLtGZ1a6Fq8M7Rs9386f8IVqu7hd5toxeGJUs0gW3mqS0kCAN8ISIcIiklMxiIiRLyoTZmZA2tRIoL2khWGIKk6baFNwA8DG6_Z27881bD22ntlVrwDldQ9O3isVMiFSkMgn05h_dNL2vw3ZBxUEEJYNKf9V75WBQO19ttR8UJWpfvNoXr47Fq-xxMT_--DcOLnpv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449875988</pqid></control><display><type>article</type><title>An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly</title><source>Access via Wiley Online Library</source><creator>Zhong, Yang ; Xu, Yan ; Ma, Jun ; Wang, Cheng ; Sheng, Siyu ; Cheng, Congtian ; Li, Mengxuan ; Han, Lu ; Zhou, Linlin ; Cai, Zhao ; Kuang, Yun ; Liang, Zheng ; Sun, Xiaoming</creator><creatorcontrib>Zhong, Yang ; Xu, Yan ; Ma, Jun ; Wang, Cheng ; Sheng, Siyu ; Cheng, Congtian ; Li, Mengxuan ; Han, Lu ; Zhou, Linlin ; Cai, Zhao ; Kuang, Yun ; Liang, Zheng ; Sun, Xiaoming</creatorcontrib><description>In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 permeability, promotes CO2 transportation and hydrogenation, as well as suppresses the hydrogen evolution reaction (HER). Linear and branched surfactants facilitated formic acid and CO production, respectively. Molecular dynamics simulations show that the artificial interface provided a facile CO2 diffusion pathway. Moreover, density‐functional theory (DFT) calculations revealed the stabilization of the key intermediate, OCHO*, through interactions with R4N+. This strategy might also be applicable to other electrocatalytic reactions where gas consumption is involved. An artificial quaternary ammonium cation (R4N+) surfactant electrode/electrolyte (E/E) interface construction strategy changes the CO2 reduction reaction (CO2RR) pathway. Molecular dynamics simulations indicate that the artificial interface provided a facile CO2 diffusion pathway. DFT calculations revealed the stabilization of the key intermediates through interactions with R4N+.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202005522</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonium ; Carbon dioxide ; Cations ; Chemical reduction ; Coated electrodes ; Electrodes ; Electrolytes ; Formic acid ; Hydrogen evolution reactions ; Hydrogen storage ; Molecular dynamics ; Permeability ; Pollutants ; reduction ; Surfactants</subject><ispartof>Angewandte Chemie International Edition, 2020-10, Vol.59 (43), p.19095-19101</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3831-6233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202005522$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202005522$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhong, Yang</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Sheng, Siyu</creatorcontrib><creatorcontrib>Cheng, Congtian</creatorcontrib><creatorcontrib>Li, Mengxuan</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Zhou, Linlin</creatorcontrib><creatorcontrib>Cai, Zhao</creatorcontrib><creatorcontrib>Kuang, Yun</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><title>An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly</title><title>Angewandte Chemie International Edition</title><description>In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 permeability, promotes CO2 transportation and hydrogenation, as well as suppresses the hydrogen evolution reaction (HER). Linear and branched surfactants facilitated formic acid and CO production, respectively. Molecular dynamics simulations show that the artificial interface provided a facile CO2 diffusion pathway. Moreover, density‐functional theory (DFT) calculations revealed the stabilization of the key intermediate, OCHO*, through interactions with R4N+. This strategy might also be applicable to other electrocatalytic reactions where gas consumption is involved. An artificial quaternary ammonium cation (R4N+) surfactant electrode/electrolyte (E/E) interface construction strategy changes the CO2 reduction reaction (CO2RR) pathway. Molecular dynamics simulations indicate that the artificial interface provided a facile CO2 diffusion pathway. DFT calculations revealed the stabilization of the key intermediates through interactions with R4N+.</description><subject>Ammonium</subject><subject>Carbon dioxide</subject><subject>Cations</subject><subject>Chemical reduction</subject><subject>Coated electrodes</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Formic acid</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen storage</subject><subject>Molecular dynamics</subject><subject>Permeability</subject><subject>Pollutants</subject><subject>reduction</subject><subject>Surfactants</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0L1OwzAUBWALgUQprMyWWFjS-idunDGKClSq6FCYLce5RiluUpxEKBuPwDPyJLhQOjD5WPp0de9B6JqSCSWETXVdwYQRRogQjJ2gERWMRjxJ-GnIMedRIgU9RxdtuwleSjIbodesxpnvKluZSjs8d2A635QwPSQ3dIAXdQfeagPYNh7nK_bnPJS96aqmxsWAc_2T1v2edrru8Bqc_fr4zNoWtoUbLtGZ1a6Fq8M7Rs9386f8IVqu7hd5toxeGJUs0gW3mqS0kCAN8ISIcIiklMxiIiRLyoTZmZA2tRIoL2khWGIKk6baFNwA8DG6_Z27881bD22ntlVrwDldQ9O3isVMiFSkMgn05h_dNL2vw3ZBxUEEJYNKf9V75WBQO19ttR8UJWpfvNoXr47Fq-xxMT_--DcOLnpv</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Zhong, Yang</creator><creator>Xu, Yan</creator><creator>Ma, Jun</creator><creator>Wang, Cheng</creator><creator>Sheng, Siyu</creator><creator>Cheng, Congtian</creator><creator>Li, Mengxuan</creator><creator>Han, Lu</creator><creator>Zhou, Linlin</creator><creator>Cai, Zhao</creator><creator>Kuang, Yun</creator><creator>Liang, Zheng</creator><creator>Sun, Xiaoming</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3831-6233</orcidid></search><sort><creationdate>20201019</creationdate><title>An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly</title><author>Zhong, Yang ; Xu, Yan ; Ma, Jun ; Wang, Cheng ; Sheng, Siyu ; Cheng, Congtian ; Li, Mengxuan ; Han, Lu ; Zhou, Linlin ; Cai, Zhao ; Kuang, Yun ; Liang, Zheng ; Sun, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2182-ab3fa091b8e8ce370515281106405827d72f658f9f8e13d1b527cbc99acb3cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium</topic><topic>Carbon dioxide</topic><topic>Cations</topic><topic>Chemical reduction</topic><topic>Coated electrodes</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Formic acid</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen storage</topic><topic>Molecular dynamics</topic><topic>Permeability</topic><topic>Pollutants</topic><topic>reduction</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yang</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Sheng, Siyu</creatorcontrib><creatorcontrib>Cheng, Congtian</creatorcontrib><creatorcontrib>Li, Mengxuan</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Zhou, Linlin</creatorcontrib><creatorcontrib>Cai, Zhao</creatorcontrib><creatorcontrib>Kuang, Yun</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yang</au><au>Xu, Yan</au><au>Ma, Jun</au><au>Wang, Cheng</au><au>Sheng, Siyu</au><au>Cheng, Congtian</au><au>Li, Mengxuan</au><au>Han, Lu</au><au>Zhou, Linlin</au><au>Cai, Zhao</au><au>Kuang, Yun</au><au>Liang, Zheng</au><au>Sun, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-10-19</date><risdate>2020</risdate><volume>59</volume><issue>43</issue><spage>19095</spage><epage>19101</epage><pages>19095-19101</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 permeability, promotes CO2 transportation and hydrogenation, as well as suppresses the hydrogen evolution reaction (HER). Linear and branched surfactants facilitated formic acid and CO production, respectively. Molecular dynamics simulations show that the artificial interface provided a facile CO2 diffusion pathway. Moreover, density‐functional theory (DFT) calculations revealed the stabilization of the key intermediate, OCHO*, through interactions with R4N+. This strategy might also be applicable to other electrocatalytic reactions where gas consumption is involved. An artificial quaternary ammonium cation (R4N+) surfactant electrode/electrolyte (E/E) interface construction strategy changes the CO2 reduction reaction (CO2RR) pathway. Molecular dynamics simulations indicate that the artificial interface provided a facile CO2 diffusion pathway. DFT calculations revealed the stabilization of the key intermediates through interactions with R4N+.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202005522</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3831-6233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-10, Vol.59 (43), p.19095-19101
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2425595987
source Access via Wiley Online Library
subjects Ammonium
Carbon dioxide
Cations
Chemical reduction
Coated electrodes
Electrodes
Electrolytes
Formic acid
Hydrogen evolution reactions
Hydrogen storage
Molecular dynamics
Permeability
Pollutants
reduction
Surfactants
title An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Electrode/Electrolyte%20Interface%20for%20CO2%20Electroreduction%20by%20Cation%20Surfactant%20Self%E2%80%90Assembly&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhong,%20Yang&rft.date=2020-10-19&rft.volume=59&rft.issue=43&rft.spage=19095&rft.epage=19101&rft.pages=19095-19101&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202005522&rft_dat=%3Cproquest_wiley%3E2425595987%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449875988&rft_id=info:pmid/&rfr_iscdi=true