An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly
In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 pe...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-10, Vol.59 (43), p.19095-19101 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19101 |
---|---|
container_issue | 43 |
container_start_page | 19095 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Zhong, Yang Xu, Yan Ma, Jun Wang, Cheng Sheng, Siyu Cheng, Congtian Li, Mengxuan Han, Lu Zhou, Linlin Cai, Zhao Kuang, Yun Liang, Zheng Sun, Xiaoming |
description | In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 permeability, promotes CO2 transportation and hydrogenation, as well as suppresses the hydrogen evolution reaction (HER). Linear and branched surfactants facilitated formic acid and CO production, respectively. Molecular dynamics simulations show that the artificial interface provided a facile CO2 diffusion pathway. Moreover, density‐functional theory (DFT) calculations revealed the stabilization of the key intermediate, OCHO*, through interactions with R4N+. This strategy might also be applicable to other electrocatalytic reactions where gas consumption is involved.
An artificial quaternary ammonium cation (R4N+) surfactant electrode/electrolyte (E/E) interface construction strategy changes the CO2 reduction reaction (CO2RR) pathway. Molecular dynamics simulations indicate that the artificial interface provided a facile CO2 diffusion pathway. DFT calculations revealed the stabilization of the key intermediates through interactions with R4N+. |
doi_str_mv | 10.1002/anie.202005522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2425595987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425595987</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2182-ab3fa091b8e8ce370515281106405827d72f658f9f8e13d1b527cbc99acb3cee3</originalsourceid><addsrcrecordid>eNpd0L1OwzAUBWALgUQprMyWWFjS-idunDGKClSq6FCYLce5RiluUpxEKBuPwDPyJLhQOjD5WPp0de9B6JqSCSWETXVdwYQRRogQjJ2gERWMRjxJ-GnIMedRIgU9RxdtuwleSjIbodesxpnvKluZSjs8d2A635QwPSQ3dIAXdQfeagPYNh7nK_bnPJS96aqmxsWAc_2T1v2edrru8Bqc_fr4zNoWtoUbLtGZ1a6Fq8M7Rs9386f8IVqu7hd5toxeGJUs0gW3mqS0kCAN8ISIcIiklMxiIiRLyoTZmZA2tRIoL2khWGIKk6baFNwA8DG6_Z27881bD22ntlVrwDldQ9O3isVMiFSkMgn05h_dNL2vw3ZBxUEEJYNKf9V75WBQO19ttR8UJWpfvNoXr47Fq-xxMT_--DcOLnpv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449875988</pqid></control><display><type>article</type><title>An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly</title><source>Access via Wiley Online Library</source><creator>Zhong, Yang ; Xu, Yan ; Ma, Jun ; Wang, Cheng ; Sheng, Siyu ; Cheng, Congtian ; Li, Mengxuan ; Han, Lu ; Zhou, Linlin ; Cai, Zhao ; Kuang, Yun ; Liang, Zheng ; Sun, Xiaoming</creator><creatorcontrib>Zhong, Yang ; Xu, Yan ; Ma, Jun ; Wang, Cheng ; Sheng, Siyu ; Cheng, Congtian ; Li, Mengxuan ; Han, Lu ; Zhou, Linlin ; Cai, Zhao ; Kuang, Yun ; Liang, Zheng ; Sun, Xiaoming</creatorcontrib><description>In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 permeability, promotes CO2 transportation and hydrogenation, as well as suppresses the hydrogen evolution reaction (HER). Linear and branched surfactants facilitated formic acid and CO production, respectively. Molecular dynamics simulations show that the artificial interface provided a facile CO2 diffusion pathway. Moreover, density‐functional theory (DFT) calculations revealed the stabilization of the key intermediate, OCHO*, through interactions with R4N+. This strategy might also be applicable to other electrocatalytic reactions where gas consumption is involved.
An artificial quaternary ammonium cation (R4N+) surfactant electrode/electrolyte (E/E) interface construction strategy changes the CO2 reduction reaction (CO2RR) pathway. Molecular dynamics simulations indicate that the artificial interface provided a facile CO2 diffusion pathway. DFT calculations revealed the stabilization of the key intermediates through interactions with R4N+.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202005522</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonium ; Carbon dioxide ; Cations ; Chemical reduction ; Coated electrodes ; Electrodes ; Electrolytes ; Formic acid ; Hydrogen evolution reactions ; Hydrogen storage ; Molecular dynamics ; Permeability ; Pollutants ; reduction ; Surfactants</subject><ispartof>Angewandte Chemie International Edition, 2020-10, Vol.59 (43), p.19095-19101</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3831-6233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202005522$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202005522$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhong, Yang</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Sheng, Siyu</creatorcontrib><creatorcontrib>Cheng, Congtian</creatorcontrib><creatorcontrib>Li, Mengxuan</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Zhou, Linlin</creatorcontrib><creatorcontrib>Cai, Zhao</creatorcontrib><creatorcontrib>Kuang, Yun</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><title>An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly</title><title>Angewandte Chemie International Edition</title><description>In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 permeability, promotes CO2 transportation and hydrogenation, as well as suppresses the hydrogen evolution reaction (HER). Linear and branched surfactants facilitated formic acid and CO production, respectively. Molecular dynamics simulations show that the artificial interface provided a facile CO2 diffusion pathway. Moreover, density‐functional theory (DFT) calculations revealed the stabilization of the key intermediate, OCHO*, through interactions with R4N+. This strategy might also be applicable to other electrocatalytic reactions where gas consumption is involved.
An artificial quaternary ammonium cation (R4N+) surfactant electrode/electrolyte (E/E) interface construction strategy changes the CO2 reduction reaction (CO2RR) pathway. Molecular dynamics simulations indicate that the artificial interface provided a facile CO2 diffusion pathway. DFT calculations revealed the stabilization of the key intermediates through interactions with R4N+.</description><subject>Ammonium</subject><subject>Carbon dioxide</subject><subject>Cations</subject><subject>Chemical reduction</subject><subject>Coated electrodes</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Formic acid</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen storage</subject><subject>Molecular dynamics</subject><subject>Permeability</subject><subject>Pollutants</subject><subject>reduction</subject><subject>Surfactants</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0L1OwzAUBWALgUQprMyWWFjS-idunDGKClSq6FCYLce5RiluUpxEKBuPwDPyJLhQOjD5WPp0de9B6JqSCSWETXVdwYQRRogQjJ2gERWMRjxJ-GnIMedRIgU9RxdtuwleSjIbodesxpnvKluZSjs8d2A635QwPSQ3dIAXdQfeagPYNh7nK_bnPJS96aqmxsWAc_2T1v2edrru8Bqc_fr4zNoWtoUbLtGZ1a6Fq8M7Rs9386f8IVqu7hd5toxeGJUs0gW3mqS0kCAN8ISIcIiklMxiIiRLyoTZmZA2tRIoL2khWGIKk6baFNwA8DG6_Z27881bD22ntlVrwDldQ9O3isVMiFSkMgn05h_dNL2vw3ZBxUEEJYNKf9V75WBQO19ttR8UJWpfvNoXr47Fq-xxMT_--DcOLnpv</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Zhong, Yang</creator><creator>Xu, Yan</creator><creator>Ma, Jun</creator><creator>Wang, Cheng</creator><creator>Sheng, Siyu</creator><creator>Cheng, Congtian</creator><creator>Li, Mengxuan</creator><creator>Han, Lu</creator><creator>Zhou, Linlin</creator><creator>Cai, Zhao</creator><creator>Kuang, Yun</creator><creator>Liang, Zheng</creator><creator>Sun, Xiaoming</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3831-6233</orcidid></search><sort><creationdate>20201019</creationdate><title>An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly</title><author>Zhong, Yang ; Xu, Yan ; Ma, Jun ; Wang, Cheng ; Sheng, Siyu ; Cheng, Congtian ; Li, Mengxuan ; Han, Lu ; Zhou, Linlin ; Cai, Zhao ; Kuang, Yun ; Liang, Zheng ; Sun, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2182-ab3fa091b8e8ce370515281106405827d72f658f9f8e13d1b527cbc99acb3cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium</topic><topic>Carbon dioxide</topic><topic>Cations</topic><topic>Chemical reduction</topic><topic>Coated electrodes</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Formic acid</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen storage</topic><topic>Molecular dynamics</topic><topic>Permeability</topic><topic>Pollutants</topic><topic>reduction</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yang</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Sheng, Siyu</creatorcontrib><creatorcontrib>Cheng, Congtian</creatorcontrib><creatorcontrib>Li, Mengxuan</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Zhou, Linlin</creatorcontrib><creatorcontrib>Cai, Zhao</creatorcontrib><creatorcontrib>Kuang, Yun</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yang</au><au>Xu, Yan</au><au>Ma, Jun</au><au>Wang, Cheng</au><au>Sheng, Siyu</au><au>Cheng, Congtian</au><au>Li, Mengxuan</au><au>Han, Lu</au><au>Zhou, Linlin</au><au>Cai, Zhao</au><au>Kuang, Yun</au><au>Liang, Zheng</au><au>Sun, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-10-19</date><risdate>2020</risdate><volume>59</volume><issue>43</issue><spage>19095</spage><epage>19101</epage><pages>19095-19101</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In this work, an artificial electrode/electrolyte (E/E) interface, made by coating the electrode surface with a quaternary ammonium cation (R4N+) surfactant, was successfully developed, leading to a change in the CO2 reduction reaction (CO2RR) pathway. This artificial E/E interface, with high CO2 permeability, promotes CO2 transportation and hydrogenation, as well as suppresses the hydrogen evolution reaction (HER). Linear and branched surfactants facilitated formic acid and CO production, respectively. Molecular dynamics simulations show that the artificial interface provided a facile CO2 diffusion pathway. Moreover, density‐functional theory (DFT) calculations revealed the stabilization of the key intermediate, OCHO*, through interactions with R4N+. This strategy might also be applicable to other electrocatalytic reactions where gas consumption is involved.
An artificial quaternary ammonium cation (R4N+) surfactant electrode/electrolyte (E/E) interface construction strategy changes the CO2 reduction reaction (CO2RR) pathway. Molecular dynamics simulations indicate that the artificial interface provided a facile CO2 diffusion pathway. DFT calculations revealed the stabilization of the key intermediates through interactions with R4N+.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202005522</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3831-6233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-10, Vol.59 (43), p.19095-19101 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2425595987 |
source | Access via Wiley Online Library |
subjects | Ammonium Carbon dioxide Cations Chemical reduction Coated electrodes Electrodes Electrolytes Formic acid Hydrogen evolution reactions Hydrogen storage Molecular dynamics Permeability Pollutants reduction Surfactants |
title | An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self‐Assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Electrode/Electrolyte%20Interface%20for%20CO2%20Electroreduction%20by%20Cation%20Surfactant%20Self%E2%80%90Assembly&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhong,%20Yang&rft.date=2020-10-19&rft.volume=59&rft.issue=43&rft.spage=19095&rft.epage=19101&rft.pages=19095-19101&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202005522&rft_dat=%3Cproquest_wiley%3E2425595987%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449875988&rft_id=info:pmid/&rfr_iscdi=true |