Lattice Modification in Ion-Implanted Ceramics

The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Am. Ceram. Soc.; (United States) 1984-02, Vol.67 (2), p.117-123
Hauptverfasser: McHARGUE, C. J., YUST, C.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue 2
container_start_page 117
container_title J. Am. Ceram. Soc.; (United States)
container_volume 67
creator McHARGUE, C. J.
YUST, C.S.
description The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 to300 keV, 1 to 4 |MX 10l6Ti.cm −2at 150 keV,2 |MX 1016Zr.cm−2 at 150 keV) AI2O3 lattice is significantly damaged but remains crystalline; the lattice hardness increases, and the scratched surface is less sensitive to fracture. The implanted (1013 to 10l6 N.cm−2 at 62 keV, 1014 to 10l6 Cr.cm −2 at 280 keV) Sic lattice becomes amorphous to a depth of 250 nm, becomes less hard, and deforms without fracture when scratched. The variation in Rutherford backscattered spectra and in surface hardness with annealing are reported and interpreted in terms of lattice defects for the Al2O3 specimens.
doi_str_mv 10.1111/j.1151-2916.1984.tb09627.x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24252660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24252660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4707-9a74d2976f593d591733771c75035231944ac5a986479b3077c3ebcd874f183e3</originalsourceid><addsrcrecordid>eNqVkE1vEzEQhi0EEiHwH6KCuO3ib6-5oCpqQ1AAUbWC28jxeoXDZp3ajkj_fb3aqAdu-DKy_PidmQehC4JrUs6HXSmCVFQTWRPd8DpvsZZU1adnaEbE-ek5mmGMaaUail-iVyntynXEZ6jemJy9dYuvofWdtyb7MCz8sFiHoVrvD70ZsmsXSxfN3tv0Gr3oTJ_cm3Odo7vrq9vl52rzfbVeXm4qyxVWlTaKt1Qr2QnNWqGJYkwpYpXATFBGNOfGCqMbyZXeMqyUZW5r20bxjjTMsTm6mHJDyh6S9dnZ3zYMg7MZJJdSiqZA7yfoEMP90aUMe5-s68vMLhwTUE4FlRIX8O0_4C4c41AWAEJ1w5SQXBfq40TZGFKKroND9HsTH4BgGG3DDkbbMCqFUR-cbcOpfH53bmGSNX0XzWB9ekpodNFSJMzRpwn763v38B8N4Mvl8ooUj3NUTQk-ZXd6SjDxD0hVNoGf31bAxfWN_LH6BYI9Aukenu0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298375649</pqid></control><display><type>article</type><title>Lattice Modification in Ion-Implanted Ceramics</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Periodicals Index Online</source><creator>McHARGUE, C. J. ; YUST, C.S.</creator><creatorcontrib>McHARGUE, C. J. ; YUST, C.S. ; Oak Ridge National Laboratory, Oak Ridge, TN</creatorcontrib><description>The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 to300 keV, 1 to 4 |MX 10l6Ti.cm −2at 150 keV,2 |MX 1016Zr.cm−2 at 150 keV) AI2O3 lattice is significantly damaged but remains crystalline; the lattice hardness increases, and the scratched surface is less sensitive to fracture. The implanted (1013 to 10l6 N.cm−2 at 62 keV, 1014 to 10l6 Cr.cm −2 at 280 keV) Sic lattice becomes amorphous to a depth of 250 nm, becomes less hard, and deforms without fracture when scratched. The variation in Rutherford backscattered spectra and in surface hardness with annealing are reported and interpreted in terms of lattice defects for the Al2O3 specimens.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1984.tb09627.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>360206 - Ceramics, Cermets, &amp; Refractories- Radiation Effects ; ALUMINIUM COMPOUNDS ; ALUMINIUM OXIDES ; AMORPHOUS STATE ; ANNEALING ; BACKSCATTERING ; CARBIDES ; CARBON COMPOUNDS ; CERAMICS ; CHALCOGENIDES ; Condensed matter: structure, mechanical and thermal properties ; CRYSTAL DEFECTS ; CRYSTAL LATTICES ; CRYSTAL STRUCTURE ; Defects and impurities in crystals; microstructure ; DEFORMATION ; Doping and impurity implantation in iii-v and ii-vi semiconductors ; ELASTIC SCATTERING ; ELECTRON MICROSCOPY ; Exact sciences and technology ; FRACTURE PROPERTIES ; HARDNESS ; HEAT TREATMENTS ; ION IMPLANTATION ; LATTICE PARAMETERS ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; MICROSCOPY ; OXIDES ; OXYGEN COMPOUNDS ; Physics ; RUTHERFORD SCATTERING ; SCATTERING ; SILICON CARBIDES ; SILICON COMPOUNDS ; Structure of solids and liquids; crystallography ; TEMPERATURE EFFECTS ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>J. Am. Ceram. Soc.; (United States), 1984-02, Vol.67 (2), p.117-123</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4707-9a74d2976f593d591733771c75035231944ac5a986479b3077c3ebcd874f183e3</citedby><cites>FETCH-LOGICAL-c4707-9a74d2976f593d591733771c75035231944ac5a986479b3077c3ebcd874f183e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1984.tb09627.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1984.tb09627.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,27869,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8970773$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6466658$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McHARGUE, C. J.</creatorcontrib><creatorcontrib>YUST, C.S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory, Oak Ridge, TN</creatorcontrib><title>Lattice Modification in Ion-Implanted Ceramics</title><title>J. Am. Ceram. Soc.; (United States)</title><description>The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 to300 keV, 1 to 4 |MX 10l6Ti.cm −2at 150 keV,2 |MX 1016Zr.cm−2 at 150 keV) AI2O3 lattice is significantly damaged but remains crystalline; the lattice hardness increases, and the scratched surface is less sensitive to fracture. The implanted (1013 to 10l6 N.cm−2 at 62 keV, 1014 to 10l6 Cr.cm −2 at 280 keV) Sic lattice becomes amorphous to a depth of 250 nm, becomes less hard, and deforms without fracture when scratched. The variation in Rutherford backscattered spectra and in surface hardness with annealing are reported and interpreted in terms of lattice defects for the Al2O3 specimens.</description><subject>360206 - Ceramics, Cermets, &amp; Refractories- Radiation Effects</subject><subject>ALUMINIUM COMPOUNDS</subject><subject>ALUMINIUM OXIDES</subject><subject>AMORPHOUS STATE</subject><subject>ANNEALING</subject><subject>BACKSCATTERING</subject><subject>CARBIDES</subject><subject>CARBON COMPOUNDS</subject><subject>CERAMICS</subject><subject>CHALCOGENIDES</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CRYSTAL DEFECTS</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL STRUCTURE</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>DEFORMATION</subject><subject>Doping and impurity implantation in iii-v and ii-vi semiconductors</subject><subject>ELASTIC SCATTERING</subject><subject>ELECTRON MICROSCOPY</subject><subject>Exact sciences and technology</subject><subject>FRACTURE PROPERTIES</subject><subject>HARDNESS</subject><subject>HEAT TREATMENTS</subject><subject>ION IMPLANTATION</subject><subject>LATTICE PARAMETERS</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>MICROSCOPY</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>Physics</subject><subject>RUTHERFORD SCATTERING</subject><subject>SCATTERING</subject><subject>SILICON CARBIDES</subject><subject>SILICON COMPOUNDS</subject><subject>Structure of solids and liquids; crystallography</subject><subject>TEMPERATURE EFFECTS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkE1vEzEQhi0EEiHwH6KCuO3ib6-5oCpqQ1AAUbWC28jxeoXDZp3ajkj_fb3aqAdu-DKy_PidmQehC4JrUs6HXSmCVFQTWRPd8DpvsZZU1adnaEbE-ek5mmGMaaUail-iVyntynXEZ6jemJy9dYuvofWdtyb7MCz8sFiHoVrvD70ZsmsXSxfN3tv0Gr3oTJ_cm3Odo7vrq9vl52rzfbVeXm4qyxVWlTaKt1Qr2QnNWqGJYkwpYpXATFBGNOfGCqMbyZXeMqyUZW5r20bxjjTMsTm6mHJDyh6S9dnZ3zYMg7MZJJdSiqZA7yfoEMP90aUMe5-s68vMLhwTUE4FlRIX8O0_4C4c41AWAEJ1w5SQXBfq40TZGFKKroND9HsTH4BgGG3DDkbbMCqFUR-cbcOpfH53bmGSNX0XzWB9ekpodNFSJMzRpwn763v38B8N4Mvl8ooUj3NUTQk-ZXd6SjDxD0hVNoGf31bAxfWN_LH6BYI9Aukenu0</recordid><startdate>198402</startdate><enddate>198402</enddate><creator>McHARGUE, C. J.</creator><creator>YUST, C.S.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>198402</creationdate><title>Lattice Modification in Ion-Implanted Ceramics</title><author>McHARGUE, C. J. ; YUST, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4707-9a74d2976f593d591733771c75035231944ac5a986479b3077c3ebcd874f183e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>360206 - Ceramics, Cermets, &amp; Refractories- Radiation Effects</topic><topic>ALUMINIUM COMPOUNDS</topic><topic>ALUMINIUM OXIDES</topic><topic>AMORPHOUS STATE</topic><topic>ANNEALING</topic><topic>BACKSCATTERING</topic><topic>CARBIDES</topic><topic>CARBON COMPOUNDS</topic><topic>CERAMICS</topic><topic>CHALCOGENIDES</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CRYSTAL DEFECTS</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL STRUCTURE</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>DEFORMATION</topic><topic>Doping and impurity implantation in iii-v and ii-vi semiconductors</topic><topic>ELASTIC SCATTERING</topic><topic>ELECTRON MICROSCOPY</topic><topic>Exact sciences and technology</topic><topic>FRACTURE PROPERTIES</topic><topic>HARDNESS</topic><topic>HEAT TREATMENTS</topic><topic>ION IMPLANTATION</topic><topic>LATTICE PARAMETERS</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>MICROSCOPY</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>Physics</topic><topic>RUTHERFORD SCATTERING</topic><topic>SCATTERING</topic><topic>SILICON CARBIDES</topic><topic>SILICON COMPOUNDS</topic><topic>Structure of solids and liquids; crystallography</topic><topic>TEMPERATURE EFFECTS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McHARGUE, C. J.</creatorcontrib><creatorcontrib>YUST, C.S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory, Oak Ridge, TN</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>J. Am. Ceram. Soc.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McHARGUE, C. J.</au><au>YUST, C.S.</au><aucorp>Oak Ridge National Laboratory, Oak Ridge, TN</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Modification in Ion-Implanted Ceramics</atitle><jtitle>J. Am. Ceram. Soc.; (United States)</jtitle><date>1984-02</date><risdate>1984</risdate><volume>67</volume><issue>2</issue><spage>117</spage><epage>123</epage><pages>117-123</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 to300 keV, 1 to 4 |MX 10l6Ti.cm −2at 150 keV,2 |MX 1016Zr.cm−2 at 150 keV) AI2O3 lattice is significantly damaged but remains crystalline; the lattice hardness increases, and the scratched surface is less sensitive to fracture. The implanted (1013 to 10l6 N.cm−2 at 62 keV, 1014 to 10l6 Cr.cm −2 at 280 keV) Sic lattice becomes amorphous to a depth of 250 nm, becomes less hard, and deforms without fracture when scratched. The variation in Rutherford backscattered spectra and in surface hardness with annealing are reported and interpreted in terms of lattice defects for the Al2O3 specimens.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1984.tb09627.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof J. Am. Ceram. Soc.; (United States), 1984-02, Vol.67 (2), p.117-123
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_24252660
source Wiley Online Library Journals Frontfile Complete; Periodicals Index Online
subjects 360206 - Ceramics, Cermets, & Refractories- Radiation Effects
ALUMINIUM COMPOUNDS
ALUMINIUM OXIDES
AMORPHOUS STATE
ANNEALING
BACKSCATTERING
CARBIDES
CARBON COMPOUNDS
CERAMICS
CHALCOGENIDES
Condensed matter: structure, mechanical and thermal properties
CRYSTAL DEFECTS
CRYSTAL LATTICES
CRYSTAL STRUCTURE
Defects and impurities in crystals
microstructure
DEFORMATION
Doping and impurity implantation in iii-v and ii-vi semiconductors
ELASTIC SCATTERING
ELECTRON MICROSCOPY
Exact sciences and technology
FRACTURE PROPERTIES
HARDNESS
HEAT TREATMENTS
ION IMPLANTATION
LATTICE PARAMETERS
MATERIALS SCIENCE
MECHANICAL PROPERTIES
MICROSCOPY
OXIDES
OXYGEN COMPOUNDS
Physics
RUTHERFORD SCATTERING
SCATTERING
SILICON CARBIDES
SILICON COMPOUNDS
Structure of solids and liquids
crystallography
TEMPERATURE EFFECTS
TRANSMISSION ELECTRON MICROSCOPY
title Lattice Modification in Ion-Implanted Ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Modification%20in%20Ion-Implanted%20Ceramics&rft.jtitle=J.%20Am.%20Ceram.%20Soc.;%20(United%20States)&rft.au=McHARGUE,%20C.%20J.&rft.aucorp=Oak%20Ridge%20National%20Laboratory,%20Oak%20Ridge,%20TN&rft.date=1984-02&rft.volume=67&rft.issue=2&rft.spage=117&rft.epage=123&rft.pages=117-123&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1984.tb09627.x&rft_dat=%3Cproquest_osti_%3E24252660%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298375649&rft_id=info:pmid/&rfr_iscdi=true