Lattice Modification in Ion-Implanted Ceramics
The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 t...
Gespeichert in:
Veröffentlicht in: | J. Am. Ceram. Soc.; (United States) 1984-02, Vol.67 (2), p.117-123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 2 |
container_start_page | 117 |
container_title | J. Am. Ceram. Soc.; (United States) |
container_volume | 67 |
creator | McHARGUE, C. J. YUST, C.S. |
description | The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 to300 keV, 1 to 4 |MX 10l6Ti.cm −2at 150 keV,2 |MX 1016Zr.cm−2 at 150 keV) AI2O3 lattice is significantly damaged but remains crystalline; the lattice hardness increases, and the scratched surface is less sensitive to fracture. The implanted (1013 to 10l6 N.cm−2 at 62 keV, 1014 to 10l6 Cr.cm −2 at 280 keV) Sic lattice becomes amorphous to a depth of 250 nm, becomes less hard, and deforms without fracture when scratched. The variation in Rutherford backscattered spectra and in surface hardness with annealing are reported and interpreted in terms of lattice defects for the Al2O3 specimens. |
doi_str_mv | 10.1111/j.1151-2916.1984.tb09627.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24252660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24252660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4707-9a74d2976f593d591733771c75035231944ac5a986479b3077c3ebcd874f183e3</originalsourceid><addsrcrecordid>eNqVkE1vEzEQhi0EEiHwH6KCuO3ib6-5oCpqQ1AAUbWC28jxeoXDZp3ajkj_fb3aqAdu-DKy_PidmQehC4JrUs6HXSmCVFQTWRPd8DpvsZZU1adnaEbE-ek5mmGMaaUail-iVyntynXEZ6jemJy9dYuvofWdtyb7MCz8sFiHoVrvD70ZsmsXSxfN3tv0Gr3oTJ_cm3Odo7vrq9vl52rzfbVeXm4qyxVWlTaKt1Qr2QnNWqGJYkwpYpXATFBGNOfGCqMbyZXeMqyUZW5r20bxjjTMsTm6mHJDyh6S9dnZ3zYMg7MZJJdSiqZA7yfoEMP90aUMe5-s68vMLhwTUE4FlRIX8O0_4C4c41AWAEJ1w5SQXBfq40TZGFKKroND9HsTH4BgGG3DDkbbMCqFUR-cbcOpfH53bmGSNX0XzWB9ekpodNFSJMzRpwn763v38B8N4Mvl8ooUj3NUTQk-ZXd6SjDxD0hVNoGf31bAxfWN_LH6BYI9Aukenu0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298375649</pqid></control><display><type>article</type><title>Lattice Modification in Ion-Implanted Ceramics</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Periodicals Index Online</source><creator>McHARGUE, C. J. ; YUST, C.S.</creator><creatorcontrib>McHARGUE, C. J. ; YUST, C.S. ; Oak Ridge National Laboratory, Oak Ridge, TN</creatorcontrib><description>The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 to300 keV, 1 to 4 |MX 10l6Ti.cm −2at 150 keV,2 |MX 1016Zr.cm−2 at 150 keV) AI2O3 lattice is significantly damaged but remains crystalline; the lattice hardness increases, and the scratched surface is less sensitive to fracture. The implanted (1013 to 10l6 N.cm−2 at 62 keV, 1014 to 10l6 Cr.cm −2 at 280 keV) Sic lattice becomes amorphous to a depth of 250 nm, becomes less hard, and deforms without fracture when scratched. The variation in Rutherford backscattered spectra and in surface hardness with annealing are reported and interpreted in terms of lattice defects for the Al2O3 specimens.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1984.tb09627.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>360206 - Ceramics, Cermets, & Refractories- Radiation Effects ; ALUMINIUM COMPOUNDS ; ALUMINIUM OXIDES ; AMORPHOUS STATE ; ANNEALING ; BACKSCATTERING ; CARBIDES ; CARBON COMPOUNDS ; CERAMICS ; CHALCOGENIDES ; Condensed matter: structure, mechanical and thermal properties ; CRYSTAL DEFECTS ; CRYSTAL LATTICES ; CRYSTAL STRUCTURE ; Defects and impurities in crystals; microstructure ; DEFORMATION ; Doping and impurity implantation in iii-v and ii-vi semiconductors ; ELASTIC SCATTERING ; ELECTRON MICROSCOPY ; Exact sciences and technology ; FRACTURE PROPERTIES ; HARDNESS ; HEAT TREATMENTS ; ION IMPLANTATION ; LATTICE PARAMETERS ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; MICROSCOPY ; OXIDES ; OXYGEN COMPOUNDS ; Physics ; RUTHERFORD SCATTERING ; SCATTERING ; SILICON CARBIDES ; SILICON COMPOUNDS ; Structure of solids and liquids; crystallography ; TEMPERATURE EFFECTS ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>J. Am. Ceram. Soc.; (United States), 1984-02, Vol.67 (2), p.117-123</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4707-9a74d2976f593d591733771c75035231944ac5a986479b3077c3ebcd874f183e3</citedby><cites>FETCH-LOGICAL-c4707-9a74d2976f593d591733771c75035231944ac5a986479b3077c3ebcd874f183e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1984.tb09627.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1984.tb09627.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,27869,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8970773$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6466658$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McHARGUE, C. J.</creatorcontrib><creatorcontrib>YUST, C.S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory, Oak Ridge, TN</creatorcontrib><title>Lattice Modification in Ion-Implanted Ceramics</title><title>J. Am. Ceram. Soc.; (United States)</title><description>The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 to300 keV, 1 to 4 |MX 10l6Ti.cm −2at 150 keV,2 |MX 1016Zr.cm−2 at 150 keV) AI2O3 lattice is significantly damaged but remains crystalline; the lattice hardness increases, and the scratched surface is less sensitive to fracture. The implanted (1013 to 10l6 N.cm−2 at 62 keV, 1014 to 10l6 Cr.cm −2 at 280 keV) Sic lattice becomes amorphous to a depth of 250 nm, becomes less hard, and deforms without fracture when scratched. The variation in Rutherford backscattered spectra and in surface hardness with annealing are reported and interpreted in terms of lattice defects for the Al2O3 specimens.</description><subject>360206 - Ceramics, Cermets, & Refractories- Radiation Effects</subject><subject>ALUMINIUM COMPOUNDS</subject><subject>ALUMINIUM OXIDES</subject><subject>AMORPHOUS STATE</subject><subject>ANNEALING</subject><subject>BACKSCATTERING</subject><subject>CARBIDES</subject><subject>CARBON COMPOUNDS</subject><subject>CERAMICS</subject><subject>CHALCOGENIDES</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CRYSTAL DEFECTS</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL STRUCTURE</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>DEFORMATION</subject><subject>Doping and impurity implantation in iii-v and ii-vi semiconductors</subject><subject>ELASTIC SCATTERING</subject><subject>ELECTRON MICROSCOPY</subject><subject>Exact sciences and technology</subject><subject>FRACTURE PROPERTIES</subject><subject>HARDNESS</subject><subject>HEAT TREATMENTS</subject><subject>ION IMPLANTATION</subject><subject>LATTICE PARAMETERS</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>MICROSCOPY</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>Physics</subject><subject>RUTHERFORD SCATTERING</subject><subject>SCATTERING</subject><subject>SILICON CARBIDES</subject><subject>SILICON COMPOUNDS</subject><subject>Structure of solids and liquids; crystallography</subject><subject>TEMPERATURE EFFECTS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkE1vEzEQhi0EEiHwH6KCuO3ib6-5oCpqQ1AAUbWC28jxeoXDZp3ajkj_fb3aqAdu-DKy_PidmQehC4JrUs6HXSmCVFQTWRPd8DpvsZZU1adnaEbE-ek5mmGMaaUail-iVyntynXEZ6jemJy9dYuvofWdtyb7MCz8sFiHoVrvD70ZsmsXSxfN3tv0Gr3oTJ_cm3Odo7vrq9vl52rzfbVeXm4qyxVWlTaKt1Qr2QnNWqGJYkwpYpXATFBGNOfGCqMbyZXeMqyUZW5r20bxjjTMsTm6mHJDyh6S9dnZ3zYMg7MZJJdSiqZA7yfoEMP90aUMe5-s68vMLhwTUE4FlRIX8O0_4C4c41AWAEJ1w5SQXBfq40TZGFKKroND9HsTH4BgGG3DDkbbMCqFUR-cbcOpfH53bmGSNX0XzWB9ekpodNFSJMzRpwn763v38B8N4Mvl8ooUj3NUTQk-ZXd6SjDxD0hVNoGf31bAxfWN_LH6BYI9Aukenu0</recordid><startdate>198402</startdate><enddate>198402</enddate><creator>McHARGUE, C. J.</creator><creator>YUST, C.S.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>198402</creationdate><title>Lattice Modification in Ion-Implanted Ceramics</title><author>McHARGUE, C. J. ; YUST, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4707-9a74d2976f593d591733771c75035231944ac5a986479b3077c3ebcd874f183e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>360206 - Ceramics, Cermets, & Refractories- Radiation Effects</topic><topic>ALUMINIUM COMPOUNDS</topic><topic>ALUMINIUM OXIDES</topic><topic>AMORPHOUS STATE</topic><topic>ANNEALING</topic><topic>BACKSCATTERING</topic><topic>CARBIDES</topic><topic>CARBON COMPOUNDS</topic><topic>CERAMICS</topic><topic>CHALCOGENIDES</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CRYSTAL DEFECTS</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL STRUCTURE</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>DEFORMATION</topic><topic>Doping and impurity implantation in iii-v and ii-vi semiconductors</topic><topic>ELASTIC SCATTERING</topic><topic>ELECTRON MICROSCOPY</topic><topic>Exact sciences and technology</topic><topic>FRACTURE PROPERTIES</topic><topic>HARDNESS</topic><topic>HEAT TREATMENTS</topic><topic>ION IMPLANTATION</topic><topic>LATTICE PARAMETERS</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>MICROSCOPY</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>Physics</topic><topic>RUTHERFORD SCATTERING</topic><topic>SCATTERING</topic><topic>SILICON CARBIDES</topic><topic>SILICON COMPOUNDS</topic><topic>Structure of solids and liquids; crystallography</topic><topic>TEMPERATURE EFFECTS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McHARGUE, C. J.</creatorcontrib><creatorcontrib>YUST, C.S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory, Oak Ridge, TN</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>J. Am. Ceram. Soc.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McHARGUE, C. J.</au><au>YUST, C.S.</au><aucorp>Oak Ridge National Laboratory, Oak Ridge, TN</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Modification in Ion-Implanted Ceramics</atitle><jtitle>J. Am. Ceram. Soc.; (United States)</jtitle><date>1984-02</date><risdate>1984</risdate><volume>67</volume><issue>2</issue><spage>117</spage><epage>123</epage><pages>117-123</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The effect of ion implantation on alumina (Al2O3) and silicon carbide (SiC) was investigated by Rutherford backscattering (RBS), indentation hardness, fracture toughness, transmission electron microscopy (TEM), and linear scratching with a diamond stylus. The implanted (10l6 to 1017 Cr.cm−2 at 280 to300 keV, 1 to 4 |MX 10l6Ti.cm −2at 150 keV,2 |MX 1016Zr.cm−2 at 150 keV) AI2O3 lattice is significantly damaged but remains crystalline; the lattice hardness increases, and the scratched surface is less sensitive to fracture. The implanted (1013 to 10l6 N.cm−2 at 62 keV, 1014 to 10l6 Cr.cm −2 at 280 keV) Sic lattice becomes amorphous to a depth of 250 nm, becomes less hard, and deforms without fracture when scratched. The variation in Rutherford backscattered spectra and in surface hardness with annealing are reported and interpreted in terms of lattice defects for the Al2O3 specimens.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1984.tb09627.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | J. Am. Ceram. Soc.; (United States), 1984-02, Vol.67 (2), p.117-123 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_24252660 |
source | Wiley Online Library Journals Frontfile Complete; Periodicals Index Online |
subjects | 360206 - Ceramics, Cermets, & Refractories- Radiation Effects ALUMINIUM COMPOUNDS ALUMINIUM OXIDES AMORPHOUS STATE ANNEALING BACKSCATTERING CARBIDES CARBON COMPOUNDS CERAMICS CHALCOGENIDES Condensed matter: structure, mechanical and thermal properties CRYSTAL DEFECTS CRYSTAL LATTICES CRYSTAL STRUCTURE Defects and impurities in crystals microstructure DEFORMATION Doping and impurity implantation in iii-v and ii-vi semiconductors ELASTIC SCATTERING ELECTRON MICROSCOPY Exact sciences and technology FRACTURE PROPERTIES HARDNESS HEAT TREATMENTS ION IMPLANTATION LATTICE PARAMETERS MATERIALS SCIENCE MECHANICAL PROPERTIES MICROSCOPY OXIDES OXYGEN COMPOUNDS Physics RUTHERFORD SCATTERING SCATTERING SILICON CARBIDES SILICON COMPOUNDS Structure of solids and liquids crystallography TEMPERATURE EFFECTS TRANSMISSION ELECTRON MICROSCOPY |
title | Lattice Modification in Ion-Implanted Ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Modification%20in%20Ion-Implanted%20Ceramics&rft.jtitle=J.%20Am.%20Ceram.%20Soc.;%20(United%20States)&rft.au=McHARGUE,%20C.%20J.&rft.aucorp=Oak%20Ridge%20National%20Laboratory,%20Oak%20Ridge,%20TN&rft.date=1984-02&rft.volume=67&rft.issue=2&rft.spage=117&rft.epage=123&rft.pages=117-123&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1984.tb09627.x&rft_dat=%3Cproquest_osti_%3E24252660%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298375649&rft_id=info:pmid/&rfr_iscdi=true |