Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 1986-07, Vol.GE-24 (4), p.603-623
Hauptverfasser: Schaber, G. G., Mccauley, J. F., Breed, C. S., Olhoeft, G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 4
container_start_page 603
container_title IEEE transactions on geoscience and remote sensing
container_volume GE-24
creator Schaber, G. G.
Mccauley, J. F.
Breed, C. S.
Olhoeft, G. R.
description Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.
doi_str_mv 10.1109/TGRS.1986.289677
format Article
fullrecord <record><control><sourceid>proquest_nasa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24249401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24246101</sourcerecordid><originalsourceid>FETCH-LOGICAL-a259t-53a446f8b58fc147672fec2f780bbc0d4d31a23483b570898d26d3344a298e9e3</originalsourceid><addsrcrecordid>eNqNkD1PwzAURT2ARCnsDAye2FL8ldgeUVXaSpVAbZmjF8dpglKn5DkD_56U8gOYru7R0R0uIQ-czThn9nm_3O5m3JpsJozNtL4iE8ZtloxN3JBbxE_GuEq5npBuVw8xtp6uj3BowoFuoYSeJvS9_sbGQUtdF2LftUi7QLE5hBGdfPCxh9iMCEJJcShw6CtwnqKDGH1_XmoCjbWnC8ARBLqDGnq4I9cVtOjv_3JKPl4X-_kq2bwt1_OXTQIitTFJJSiVVaZITeW40pkWlXei0oYVhWOlKiUHIZWRRaqZsaYUWSmlUiCs8dbLKXm67J767mvwGPNjg863LQTfDZgLJZRVjP9LzPiv-HgRAyDk4yeYny9mLLVKpvIH8yhxuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24246101</pqid></control><display><type>article</type><title>Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara</title><source>IEEE Electronic Library (IEL)</source><source>NASA Technical Reports Server</source><creator>Schaber, G. G. ; Mccauley, J. F. ; Breed, C. S. ; Olhoeft, G. R.</creator><creatorcontrib>Schaber, G. G. ; Mccauley, J. F. ; Breed, C. S. ; Olhoeft, G. R.</creatorcontrib><description>Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.</description><identifier>ISSN: 0196-2892</identifier><identifier>DOI: 10.1109/TGRS.1986.289677</identifier><language>eng</language><publisher>Legacy CDMS</publisher><subject>Earth Resources And Remote Sensing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 1986-07, Vol.GE-24 (4), p.603-623</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Schaber, G. G.</creatorcontrib><creatorcontrib>Mccauley, J. F.</creatorcontrib><creatorcontrib>Breed, C. S.</creatorcontrib><creatorcontrib>Olhoeft, G. R.</creatorcontrib><title>Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara</title><title>IEEE transactions on geoscience and remote sensing</title><description>Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.</description><subject>Earth Resources And Remote Sensing</subject><issn>0196-2892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNqNkD1PwzAURT2ARCnsDAye2FL8ldgeUVXaSpVAbZmjF8dpglKn5DkD_56U8gOYru7R0R0uIQ-czThn9nm_3O5m3JpsJozNtL4iE8ZtloxN3JBbxE_GuEq5npBuVw8xtp6uj3BowoFuoYSeJvS9_sbGQUtdF2LftUi7QLE5hBGdfPCxh9iMCEJJcShw6CtwnqKDGH1_XmoCjbWnC8ARBLqDGnq4I9cVtOjv_3JKPl4X-_kq2bwt1_OXTQIitTFJJSiVVaZITeW40pkWlXei0oYVhWOlKiUHIZWRRaqZsaYUWSmlUiCs8dbLKXm67J767mvwGPNjg863LQTfDZgLJZRVjP9LzPiv-HgRAyDk4yeYny9mLLVKpvIH8yhxuA</recordid><startdate>19860701</startdate><enddate>19860701</enddate><creator>Schaber, G. G.</creator><creator>Mccauley, J. F.</creator><creator>Breed, C. S.</creator><creator>Olhoeft, G. R.</creator><scope>CYE</scope><scope>CYI</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19860701</creationdate><title>Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara</title><author>Schaber, G. G. ; Mccauley, J. F. ; Breed, C. S. ; Olhoeft, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a259t-53a446f8b58fc147672fec2f780bbc0d4d31a23483b570898d26d3344a298e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Earth Resources And Remote Sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaber, G. G.</creatorcontrib><creatorcontrib>Mccauley, J. F.</creatorcontrib><creatorcontrib>Breed, C. S.</creatorcontrib><creatorcontrib>Olhoeft, G. R.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaber, G. G.</au><au>Mccauley, J. F.</au><au>Breed, C. S.</au><au>Olhoeft, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>1986-07-01</date><risdate>1986</risdate><volume>GE-24</volume><issue>4</issue><spage>603</spage><epage>623</epage><pages>603-623</pages><issn>0196-2892</issn><abstract>Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.</abstract><cop>Legacy CDMS</cop><doi>10.1109/TGRS.1986.289677</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 1986-07, Vol.GE-24 (4), p.603-623
issn 0196-2892
language eng
recordid cdi_proquest_miscellaneous_24249401
source IEEE Electronic Library (IEL); NASA Technical Reports Server
subjects Earth Resources And Remote Sensing
title Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nasa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shuttle%20Imaging%20Radar%20-%20Physical%20controls%20on%20signal%20penetration%20and%20subsurface%20scattering%20in%20the%20Eastern%20Sahara&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Schaber,%20G.%20G.&rft.date=1986-07-01&rft.volume=GE-24&rft.issue=4&rft.spage=603&rft.epage=623&rft.pages=603-623&rft.issn=0196-2892&rft_id=info:doi/10.1109/TGRS.1986.289677&rft_dat=%3Cproquest_nasa_%3E24246101%3C/proquest_nasa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24246101&rft_id=info:pmid/&rfr_iscdi=true