Controlling CO2 Hydrogenation Selectivity by Metal‐Supported Electron Transfer

Tuning CO2 hydrogenation selectivity to obtain targeted value‐added chemicals and fuels has attracted increasing attention. However, a fundamental understanding of the way to control the selectivity is still lacking, posing a challenge in catalyst design and development. Herein, we report our new di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-11, Vol.59 (45), p.19983-19989
Hauptverfasser: Li, Xiaoyu, Lin, Jian, Li, Lin, Huang, Yike, Pan, Xiaoli, Collins, Sebastián E., Ren, Yujing, Su, Yang, Kang, Leilei, Liu, Xiaoyan, Zhou, Yanliang, Wang, Hua, Wang, Aiqin, Qiao, Botao, Wang, Xiaodong, Zhang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19989
container_issue 45
container_start_page 19983
container_title Angewandte Chemie International Edition
container_volume 59
creator Li, Xiaoyu
Lin, Jian
Li, Lin
Huang, Yike
Pan, Xiaoli
Collins, Sebastián E.
Ren, Yujing
Su, Yang
Kang, Leilei
Liu, Xiaoyan
Zhou, Yanliang
Wang, Hua
Wang, Aiqin
Qiao, Botao
Wang, Xiaodong
Zhang, Tao
description Tuning CO2 hydrogenation selectivity to obtain targeted value‐added chemicals and fuels has attracted increasing attention. However, a fundamental understanding of the way to control the selectivity is still lacking, posing a challenge in catalyst design and development. Herein, we report our new discovery in ambient pressure CO2 hydrogenation reaction where selectivity can be completely reversed by simply changing the crystal phases of TiO2 support (anatase‐ or rutile‐TiO2) or changing metal loadings on anatase‐TiO2. Operando spectroscopy and NAP‐XPS studies reveal that the determining factor is a different electron transfer from metal to the support, most probably as a result of the different extents of hydrogen spillover, which changes the adsorption and activation of the intermediate of CO. Based on this new finding, we can not only regulate CO2 hydrogenation selectivity but also tune catalytic performance in other important reactions, thus opening up a door for efficient catalyst development by rational design. CO2 hydrogenation selectivity can be tuned by changing the crystal phase of TiO2 or simply changing the metal loadings on anatase‐TiO2 supported Ru catalysts. The essential reason for the distinctly different selectivity is the charge transfer under reaction conditions, probably as a result of hydrogen spillover, which leads to changes in adsorption and activation of intermediate CO.
doi_str_mv 10.1002/anie.202003847
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2424095809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424095809</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2847-a2123dcd71687e6dbc7fe2c9ad29a721d3f6ffcd621fe84f7978dd9be6449883</originalsourceid><addsrcrecordid>eNpd0M1Kw0AQB_BFFKzVq-eAFy-p-5FkN8cSqi1UK7T3ZZudlJTtbtwkSm4-gs_ok7il4sHTzDA_huGP0C3BE4IxfVC2hgnFFGMmEn6GRiSlJGacs_PQJ4zFXKTkEl217T54IXA2Qq-Fs513xtR2FxUrGs0H7d0OrOpqZ6M1GCi7-r3uhmg7RM_QKfP9-bXum8b5DnQ0O-59kBuvbFuBv0YXlTIt3PzWMdo8zjbFPF6unhbFdBnvaPguVpRQpkvNSSY4ZHpb8gpomStNc8Up0azKqqrUGSUViKTiORda51vIkiQXgo3R_els491bD20nD3VbgjHKgutbSROa4DwVOA_07h_du97b8FxQaVBJylhQ-Ul91AYG2fj6oPwgCZbHcOUxXPkXrpy-LGZ_E_sBdNdxdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454094533</pqid></control><display><type>article</type><title>Controlling CO2 Hydrogenation Selectivity by Metal‐Supported Electron Transfer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Xiaoyu ; Lin, Jian ; Li, Lin ; Huang, Yike ; Pan, Xiaoli ; Collins, Sebastián E. ; Ren, Yujing ; Su, Yang ; Kang, Leilei ; Liu, Xiaoyan ; Zhou, Yanliang ; Wang, Hua ; Wang, Aiqin ; Qiao, Botao ; Wang, Xiaodong ; Zhang, Tao</creator><creatorcontrib>Li, Xiaoyu ; Lin, Jian ; Li, Lin ; Huang, Yike ; Pan, Xiaoli ; Collins, Sebastián E. ; Ren, Yujing ; Su, Yang ; Kang, Leilei ; Liu, Xiaoyan ; Zhou, Yanliang ; Wang, Hua ; Wang, Aiqin ; Qiao, Botao ; Wang, Xiaodong ; Zhang, Tao</creatorcontrib><description>Tuning CO2 hydrogenation selectivity to obtain targeted value‐added chemicals and fuels has attracted increasing attention. However, a fundamental understanding of the way to control the selectivity is still lacking, posing a challenge in catalyst design and development. Herein, we report our new discovery in ambient pressure CO2 hydrogenation reaction where selectivity can be completely reversed by simply changing the crystal phases of TiO2 support (anatase‐ or rutile‐TiO2) or changing metal loadings on anatase‐TiO2. Operando spectroscopy and NAP‐XPS studies reveal that the determining factor is a different electron transfer from metal to the support, most probably as a result of the different extents of hydrogen spillover, which changes the adsorption and activation of the intermediate of CO. Based on this new finding, we can not only regulate CO2 hydrogenation selectivity but also tune catalytic performance in other important reactions, thus opening up a door for efficient catalyst development by rational design. CO2 hydrogenation selectivity can be tuned by changing the crystal phase of TiO2 or simply changing the metal loadings on anatase‐TiO2 supported Ru catalysts. The essential reason for the distinctly different selectivity is the charge transfer under reaction conditions, probably as a result of hydrogen spillover, which leads to changes in adsorption and activation of intermediate CO.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202003847</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anatase ; Carbon dioxide ; Catalysis ; Catalysts ; CO2 ; crystal phase ; Electron transfer ; hydrogen spillover ; Hydrogen storage ; Hydrogenation ; Pressure ; Selectivity ; Spectroscopy ; Titanium dioxide</subject><ispartof>Angewandte Chemie International Edition, 2020-11, Vol.59 (45), p.19983-19989</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8705-1278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202003847$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202003847$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Xiaoyu</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Huang, Yike</creatorcontrib><creatorcontrib>Pan, Xiaoli</creatorcontrib><creatorcontrib>Collins, Sebastián E.</creatorcontrib><creatorcontrib>Ren, Yujing</creatorcontrib><creatorcontrib>Su, Yang</creatorcontrib><creatorcontrib>Kang, Leilei</creatorcontrib><creatorcontrib>Liu, Xiaoyan</creatorcontrib><creatorcontrib>Zhou, Yanliang</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Wang, Aiqin</creatorcontrib><creatorcontrib>Qiao, Botao</creatorcontrib><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><title>Controlling CO2 Hydrogenation Selectivity by Metal‐Supported Electron Transfer</title><title>Angewandte Chemie International Edition</title><description>Tuning CO2 hydrogenation selectivity to obtain targeted value‐added chemicals and fuels has attracted increasing attention. However, a fundamental understanding of the way to control the selectivity is still lacking, posing a challenge in catalyst design and development. Herein, we report our new discovery in ambient pressure CO2 hydrogenation reaction where selectivity can be completely reversed by simply changing the crystal phases of TiO2 support (anatase‐ or rutile‐TiO2) or changing metal loadings on anatase‐TiO2. Operando spectroscopy and NAP‐XPS studies reveal that the determining factor is a different electron transfer from metal to the support, most probably as a result of the different extents of hydrogen spillover, which changes the adsorption and activation of the intermediate of CO. Based on this new finding, we can not only regulate CO2 hydrogenation selectivity but also tune catalytic performance in other important reactions, thus opening up a door for efficient catalyst development by rational design. CO2 hydrogenation selectivity can be tuned by changing the crystal phase of TiO2 or simply changing the metal loadings on anatase‐TiO2 supported Ru catalysts. The essential reason for the distinctly different selectivity is the charge transfer under reaction conditions, probably as a result of hydrogen spillover, which leads to changes in adsorption and activation of intermediate CO.</description><subject>Anatase</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>CO2</subject><subject>crystal phase</subject><subject>Electron transfer</subject><subject>hydrogen spillover</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Pressure</subject><subject>Selectivity</subject><subject>Spectroscopy</subject><subject>Titanium dioxide</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0M1Kw0AQB_BFFKzVq-eAFy-p-5FkN8cSqi1UK7T3ZZudlJTtbtwkSm4-gs_ok7il4sHTzDA_huGP0C3BE4IxfVC2hgnFFGMmEn6GRiSlJGacs_PQJ4zFXKTkEl217T54IXA2Qq-Fs513xtR2FxUrGs0H7d0OrOpqZ6M1GCi7-r3uhmg7RM_QKfP9-bXum8b5DnQ0O-59kBuvbFuBv0YXlTIt3PzWMdo8zjbFPF6unhbFdBnvaPguVpRQpkvNSSY4ZHpb8gpomStNc8Up0azKqqrUGSUViKTiORda51vIkiQXgo3R_els491bD20nD3VbgjHKgutbSROa4DwVOA_07h_du97b8FxQaVBJylhQ-Ul91AYG2fj6oPwgCZbHcOUxXPkXrpy-LGZ_E_sBdNdxdQ</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Li, Xiaoyu</creator><creator>Lin, Jian</creator><creator>Li, Lin</creator><creator>Huang, Yike</creator><creator>Pan, Xiaoli</creator><creator>Collins, Sebastián E.</creator><creator>Ren, Yujing</creator><creator>Su, Yang</creator><creator>Kang, Leilei</creator><creator>Liu, Xiaoyan</creator><creator>Zhou, Yanliang</creator><creator>Wang, Hua</creator><creator>Wang, Aiqin</creator><creator>Qiao, Botao</creator><creator>Wang, Xiaodong</creator><creator>Zhang, Tao</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8705-1278</orcidid></search><sort><creationdate>20201102</creationdate><title>Controlling CO2 Hydrogenation Selectivity by Metal‐Supported Electron Transfer</title><author>Li, Xiaoyu ; Lin, Jian ; Li, Lin ; Huang, Yike ; Pan, Xiaoli ; Collins, Sebastián E. ; Ren, Yujing ; Su, Yang ; Kang, Leilei ; Liu, Xiaoyan ; Zhou, Yanliang ; Wang, Hua ; Wang, Aiqin ; Qiao, Botao ; Wang, Xiaodong ; Zhang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2847-a2123dcd71687e6dbc7fe2c9ad29a721d3f6ffcd621fe84f7978dd9be6449883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anatase</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>CO2</topic><topic>crystal phase</topic><topic>Electron transfer</topic><topic>hydrogen spillover</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Pressure</topic><topic>Selectivity</topic><topic>Spectroscopy</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaoyu</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Huang, Yike</creatorcontrib><creatorcontrib>Pan, Xiaoli</creatorcontrib><creatorcontrib>Collins, Sebastián E.</creatorcontrib><creatorcontrib>Ren, Yujing</creatorcontrib><creatorcontrib>Su, Yang</creatorcontrib><creatorcontrib>Kang, Leilei</creatorcontrib><creatorcontrib>Liu, Xiaoyan</creatorcontrib><creatorcontrib>Zhou, Yanliang</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Wang, Aiqin</creatorcontrib><creatorcontrib>Qiao, Botao</creatorcontrib><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaoyu</au><au>Lin, Jian</au><au>Li, Lin</au><au>Huang, Yike</au><au>Pan, Xiaoli</au><au>Collins, Sebastián E.</au><au>Ren, Yujing</au><au>Su, Yang</au><au>Kang, Leilei</au><au>Liu, Xiaoyan</au><au>Zhou, Yanliang</au><au>Wang, Hua</au><au>Wang, Aiqin</au><au>Qiao, Botao</au><au>Wang, Xiaodong</au><au>Zhang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling CO2 Hydrogenation Selectivity by Metal‐Supported Electron Transfer</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-11-02</date><risdate>2020</risdate><volume>59</volume><issue>45</issue><spage>19983</spage><epage>19989</epage><pages>19983-19989</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Tuning CO2 hydrogenation selectivity to obtain targeted value‐added chemicals and fuels has attracted increasing attention. However, a fundamental understanding of the way to control the selectivity is still lacking, posing a challenge in catalyst design and development. Herein, we report our new discovery in ambient pressure CO2 hydrogenation reaction where selectivity can be completely reversed by simply changing the crystal phases of TiO2 support (anatase‐ or rutile‐TiO2) or changing metal loadings on anatase‐TiO2. Operando spectroscopy and NAP‐XPS studies reveal that the determining factor is a different electron transfer from metal to the support, most probably as a result of the different extents of hydrogen spillover, which changes the adsorption and activation of the intermediate of CO. Based on this new finding, we can not only regulate CO2 hydrogenation selectivity but also tune catalytic performance in other important reactions, thus opening up a door for efficient catalyst development by rational design. CO2 hydrogenation selectivity can be tuned by changing the crystal phase of TiO2 or simply changing the metal loadings on anatase‐TiO2 supported Ru catalysts. The essential reason for the distinctly different selectivity is the charge transfer under reaction conditions, probably as a result of hydrogen spillover, which leads to changes in adsorption and activation of intermediate CO.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202003847</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8705-1278</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-11, Vol.59 (45), p.19983-19989
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2424095809
source Wiley Online Library Journals Frontfile Complete
subjects Anatase
Carbon dioxide
Catalysis
Catalysts
CO2
crystal phase
Electron transfer
hydrogen spillover
Hydrogen storage
Hydrogenation
Pressure
Selectivity
Spectroscopy
Titanium dioxide
title Controlling CO2 Hydrogenation Selectivity by Metal‐Supported Electron Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20CO2%20Hydrogenation%20Selectivity%20by%20Metal%E2%80%90Supported%20Electron%20Transfer&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Xiaoyu&rft.date=2020-11-02&rft.volume=59&rft.issue=45&rft.spage=19983&rft.epage=19989&rft.pages=19983-19989&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202003847&rft_dat=%3Cproquest_wiley%3E2424095809%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454094533&rft_id=info:pmid/&rfr_iscdi=true