Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots

Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-08, Vol.20 (8), p.5909-5915
Hauptverfasser: Christodoulou, Sotirios, Ramiro, Iñigo, Othonos, Andreas, Figueroba, Alberto, Dalmases, Mariona, Özdemir, Onur, Pradhan, Santanu, Itskos, Grigorios, Konstantatos, Gerasimos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5915
container_issue 8
container_start_page 5909
container_title Nano letters
container_volume 20
creator Christodoulou, Sotirios
Ramiro, Iñigo
Othonos, Andreas
Figueroba, Alberto
Dalmases, Mariona
Özdemir, Onur
Pradhan, Santanu
Itskos, Grigorios
Konstantatos, Gerasimos
description Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm–1.
doi_str_mv 10.1021/acs.nanolett.0c01859
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423797737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423797737</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-519c080c78f702e59ea73e742a4916e54948f0643fb7da913a61a7ea176496543</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEs9_wMFHLil27MTxEUqhSEg8Ws7RNt2AkWMX20Fw5J_jUuDIaUeamZXmy7JjRkeMFuwU2jCyYJ3BGEe0pawu1Va2x0pO80qpYvtP12I32w_hhVKqeEn3ss-Ztk8G88l7q6Oz5Aq0JWCXZBZ1PxiIuCSTXoegk3nWehcCic9Irm3nwSdzjgZb15PzdanzST24xRAimSK8afNBLtwqxe4WMzJ2xji9BEPuB7Bx6JMXw2G204EJePRzD7LHy8l8PM1vbq-ux2c3OQguY14y1dKatrLuJC2wVAiSoxQFCMUqLIUSdUcrwbuFXIJiHCoGEoHJSqiqFPwgO9n8XXn3OmCITZrVojFg0Q2hKUTBpZKSyxQVm-j3Xo9ds_K6B__RMNqsiTeJePNLvPkhnmp0U1u7L27wNu35v_IFFY-IrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423797737</pqid></control><display><type>article</type><title>Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots</title><source>ACS Publications</source><creator>Christodoulou, Sotirios ; Ramiro, Iñigo ; Othonos, Andreas ; Figueroba, Alberto ; Dalmases, Mariona ; Özdemir, Onur ; Pradhan, Santanu ; Itskos, Grigorios ; Konstantatos, Gerasimos</creator><creatorcontrib>Christodoulou, Sotirios ; Ramiro, Iñigo ; Othonos, Andreas ; Figueroba, Alberto ; Dalmases, Mariona ; Özdemir, Onur ; Pradhan, Santanu ; Itskos, Grigorios ; Konstantatos, Gerasimos</creatorcontrib><description>Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm–1.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c01859</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2020-08, Vol.20 (8), p.5909-5915</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-519c080c78f702e59ea73e742a4916e54948f0643fb7da913a61a7ea176496543</citedby><cites>FETCH-LOGICAL-a437t-519c080c78f702e59ea73e742a4916e54948f0643fb7da913a61a7ea176496543</cites><orcidid>0000-0002-9663-4002 ; 0000-0002-8934-4269 ; 0000-0001-7020-3661 ; 0000-0001-7701-8127 ; 0000-0002-4151-6586 ; 0000-0003-3971-3801 ; 0000-0001-8692-5087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c01859$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c01859$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Christodoulou, Sotirios</creatorcontrib><creatorcontrib>Ramiro, Iñigo</creatorcontrib><creatorcontrib>Othonos, Andreas</creatorcontrib><creatorcontrib>Figueroba, Alberto</creatorcontrib><creatorcontrib>Dalmases, Mariona</creatorcontrib><creatorcontrib>Özdemir, Onur</creatorcontrib><creatorcontrib>Pradhan, Santanu</creatorcontrib><creatorcontrib>Itskos, Grigorios</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><title>Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm–1.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEs9_wMFHLil27MTxEUqhSEg8Ws7RNt2AkWMX20Fw5J_jUuDIaUeamZXmy7JjRkeMFuwU2jCyYJ3BGEe0pawu1Va2x0pO80qpYvtP12I32w_hhVKqeEn3ss-Ztk8G88l7q6Oz5Aq0JWCXZBZ1PxiIuCSTXoegk3nWehcCic9Irm3nwSdzjgZb15PzdanzST24xRAimSK8afNBLtwqxe4WMzJ2xji9BEPuB7Bx6JMXw2G204EJePRzD7LHy8l8PM1vbq-ux2c3OQguY14y1dKatrLuJC2wVAiSoxQFCMUqLIUSdUcrwbuFXIJiHCoGEoHJSqiqFPwgO9n8XXn3OmCITZrVojFg0Q2hKUTBpZKSyxQVm-j3Xo9ds_K6B__RMNqsiTeJePNLvPkhnmp0U1u7L27wNu35v_IFFY-IrA</recordid><startdate>20200812</startdate><enddate>20200812</enddate><creator>Christodoulou, Sotirios</creator><creator>Ramiro, Iñigo</creator><creator>Othonos, Andreas</creator><creator>Figueroba, Alberto</creator><creator>Dalmases, Mariona</creator><creator>Özdemir, Onur</creator><creator>Pradhan, Santanu</creator><creator>Itskos, Grigorios</creator><creator>Konstantatos, Gerasimos</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9663-4002</orcidid><orcidid>https://orcid.org/0000-0002-8934-4269</orcidid><orcidid>https://orcid.org/0000-0001-7020-3661</orcidid><orcidid>https://orcid.org/0000-0001-7701-8127</orcidid><orcidid>https://orcid.org/0000-0002-4151-6586</orcidid><orcidid>https://orcid.org/0000-0003-3971-3801</orcidid><orcidid>https://orcid.org/0000-0001-8692-5087</orcidid></search><sort><creationdate>20200812</creationdate><title>Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots</title><author>Christodoulou, Sotirios ; Ramiro, Iñigo ; Othonos, Andreas ; Figueroba, Alberto ; Dalmases, Mariona ; Özdemir, Onur ; Pradhan, Santanu ; Itskos, Grigorios ; Konstantatos, Gerasimos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-519c080c78f702e59ea73e742a4916e54948f0643fb7da913a61a7ea176496543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christodoulou, Sotirios</creatorcontrib><creatorcontrib>Ramiro, Iñigo</creatorcontrib><creatorcontrib>Othonos, Andreas</creatorcontrib><creatorcontrib>Figueroba, Alberto</creatorcontrib><creatorcontrib>Dalmases, Mariona</creatorcontrib><creatorcontrib>Özdemir, Onur</creatorcontrib><creatorcontrib>Pradhan, Santanu</creatorcontrib><creatorcontrib>Itskos, Grigorios</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christodoulou, Sotirios</au><au>Ramiro, Iñigo</au><au>Othonos, Andreas</au><au>Figueroba, Alberto</au><au>Dalmases, Mariona</au><au>Özdemir, Onur</au><au>Pradhan, Santanu</au><au>Itskos, Grigorios</au><au>Konstantatos, Gerasimos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-08-12</date><risdate>2020</risdate><volume>20</volume><issue>8</issue><spage>5909</spage><epage>5915</epage><pages>5909-5915</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm–1.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.0c01859</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9663-4002</orcidid><orcidid>https://orcid.org/0000-0002-8934-4269</orcidid><orcidid>https://orcid.org/0000-0001-7020-3661</orcidid><orcidid>https://orcid.org/0000-0001-7701-8127</orcidid><orcidid>https://orcid.org/0000-0002-4151-6586</orcidid><orcidid>https://orcid.org/0000-0003-3971-3801</orcidid><orcidid>https://orcid.org/0000-0001-8692-5087</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2020-08, Vol.20 (8), p.5909-5915
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2423797737
source ACS Publications
title Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Exciton%20Gain%20and%20Stimulated%20Emission%20Across%20the%20Infrared%20Telecom%20Band%20from%20Robust%20Heavily%20Doped%20PbS%20Colloidal%20Quantum%20Dots&rft.jtitle=Nano%20letters&rft.au=Christodoulou,%20Sotirios&rft.date=2020-08-12&rft.volume=20&rft.issue=8&rft.spage=5909&rft.epage=5915&rft.pages=5909-5915&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c01859&rft_dat=%3Cproquest_cross%3E2423797737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423797737&rft_id=info:pmid/&rfr_iscdi=true