Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots
Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that d...
Gespeichert in:
Veröffentlicht in: | Nano letters 2020-08, Vol.20 (8), p.5909-5915 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5915 |
---|---|
container_issue | 8 |
container_start_page | 5909 |
container_title | Nano letters |
container_volume | 20 |
creator | Christodoulou, Sotirios Ramiro, Iñigo Othonos, Andreas Figueroba, Alberto Dalmases, Mariona Özdemir, Onur Pradhan, Santanu Itskos, Grigorios Konstantatos, Gerasimos |
description | Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm–1. |
doi_str_mv | 10.1021/acs.nanolett.0c01859 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423797737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423797737</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-519c080c78f702e59ea73e742a4916e54948f0643fb7da913a61a7ea176496543</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEs9_wMFHLil27MTxEUqhSEg8Ws7RNt2AkWMX20Fw5J_jUuDIaUeamZXmy7JjRkeMFuwU2jCyYJ3BGEe0pawu1Va2x0pO80qpYvtP12I32w_hhVKqeEn3ss-Ztk8G88l7q6Oz5Aq0JWCXZBZ1PxiIuCSTXoegk3nWehcCic9Irm3nwSdzjgZb15PzdanzST24xRAimSK8afNBLtwqxe4WMzJ2xji9BEPuB7Bx6JMXw2G204EJePRzD7LHy8l8PM1vbq-ux2c3OQguY14y1dKatrLuJC2wVAiSoxQFCMUqLIUSdUcrwbuFXIJiHCoGEoHJSqiqFPwgO9n8XXn3OmCITZrVojFg0Q2hKUTBpZKSyxQVm-j3Xo9ds_K6B__RMNqsiTeJePNLvPkhnmp0U1u7L27wNu35v_IFFY-IrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423797737</pqid></control><display><type>article</type><title>Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots</title><source>ACS Publications</source><creator>Christodoulou, Sotirios ; Ramiro, Iñigo ; Othonos, Andreas ; Figueroba, Alberto ; Dalmases, Mariona ; Özdemir, Onur ; Pradhan, Santanu ; Itskos, Grigorios ; Konstantatos, Gerasimos</creator><creatorcontrib>Christodoulou, Sotirios ; Ramiro, Iñigo ; Othonos, Andreas ; Figueroba, Alberto ; Dalmases, Mariona ; Özdemir, Onur ; Pradhan, Santanu ; Itskos, Grigorios ; Konstantatos, Gerasimos</creatorcontrib><description>Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm–1.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c01859</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2020-08, Vol.20 (8), p.5909-5915</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-519c080c78f702e59ea73e742a4916e54948f0643fb7da913a61a7ea176496543</citedby><cites>FETCH-LOGICAL-a437t-519c080c78f702e59ea73e742a4916e54948f0643fb7da913a61a7ea176496543</cites><orcidid>0000-0002-9663-4002 ; 0000-0002-8934-4269 ; 0000-0001-7020-3661 ; 0000-0001-7701-8127 ; 0000-0002-4151-6586 ; 0000-0003-3971-3801 ; 0000-0001-8692-5087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c01859$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c01859$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Christodoulou, Sotirios</creatorcontrib><creatorcontrib>Ramiro, Iñigo</creatorcontrib><creatorcontrib>Othonos, Andreas</creatorcontrib><creatorcontrib>Figueroba, Alberto</creatorcontrib><creatorcontrib>Dalmases, Mariona</creatorcontrib><creatorcontrib>Özdemir, Onur</creatorcontrib><creatorcontrib>Pradhan, Santanu</creatorcontrib><creatorcontrib>Itskos, Grigorios</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><title>Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm–1.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEs9_wMFHLil27MTxEUqhSEg8Ws7RNt2AkWMX20Fw5J_jUuDIaUeamZXmy7JjRkeMFuwU2jCyYJ3BGEe0pawu1Va2x0pO80qpYvtP12I32w_hhVKqeEn3ss-Ztk8G88l7q6Oz5Aq0JWCXZBZ1PxiIuCSTXoegk3nWehcCic9Irm3nwSdzjgZb15PzdanzST24xRAimSK8afNBLtwqxe4WMzJ2xji9BEPuB7Bx6JMXw2G204EJePRzD7LHy8l8PM1vbq-ux2c3OQguY14y1dKatrLuJC2wVAiSoxQFCMUqLIUSdUcrwbuFXIJiHCoGEoHJSqiqFPwgO9n8XXn3OmCITZrVojFg0Q2hKUTBpZKSyxQVm-j3Xo9ds_K6B__RMNqsiTeJePNLvPkhnmp0U1u7L27wNu35v_IFFY-IrA</recordid><startdate>20200812</startdate><enddate>20200812</enddate><creator>Christodoulou, Sotirios</creator><creator>Ramiro, Iñigo</creator><creator>Othonos, Andreas</creator><creator>Figueroba, Alberto</creator><creator>Dalmases, Mariona</creator><creator>Özdemir, Onur</creator><creator>Pradhan, Santanu</creator><creator>Itskos, Grigorios</creator><creator>Konstantatos, Gerasimos</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9663-4002</orcidid><orcidid>https://orcid.org/0000-0002-8934-4269</orcidid><orcidid>https://orcid.org/0000-0001-7020-3661</orcidid><orcidid>https://orcid.org/0000-0001-7701-8127</orcidid><orcidid>https://orcid.org/0000-0002-4151-6586</orcidid><orcidid>https://orcid.org/0000-0003-3971-3801</orcidid><orcidid>https://orcid.org/0000-0001-8692-5087</orcidid></search><sort><creationdate>20200812</creationdate><title>Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots</title><author>Christodoulou, Sotirios ; Ramiro, Iñigo ; Othonos, Andreas ; Figueroba, Alberto ; Dalmases, Mariona ; Özdemir, Onur ; Pradhan, Santanu ; Itskos, Grigorios ; Konstantatos, Gerasimos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-519c080c78f702e59ea73e742a4916e54948f0643fb7da913a61a7ea176496543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christodoulou, Sotirios</creatorcontrib><creatorcontrib>Ramiro, Iñigo</creatorcontrib><creatorcontrib>Othonos, Andreas</creatorcontrib><creatorcontrib>Figueroba, Alberto</creatorcontrib><creatorcontrib>Dalmases, Mariona</creatorcontrib><creatorcontrib>Özdemir, Onur</creatorcontrib><creatorcontrib>Pradhan, Santanu</creatorcontrib><creatorcontrib>Itskos, Grigorios</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christodoulou, Sotirios</au><au>Ramiro, Iñigo</au><au>Othonos, Andreas</au><au>Figueroba, Alberto</au><au>Dalmases, Mariona</au><au>Özdemir, Onur</au><au>Pradhan, Santanu</au><au>Itskos, Grigorios</au><au>Konstantatos, Gerasimos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-08-12</date><risdate>2020</risdate><volume>20</volume><issue>8</issue><spage>5909</spage><epage>5915</epage><pages>5909-5915</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III–V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm–1.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.0c01859</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9663-4002</orcidid><orcidid>https://orcid.org/0000-0002-8934-4269</orcidid><orcidid>https://orcid.org/0000-0001-7020-3661</orcidid><orcidid>https://orcid.org/0000-0001-7701-8127</orcidid><orcidid>https://orcid.org/0000-0002-4151-6586</orcidid><orcidid>https://orcid.org/0000-0003-3971-3801</orcidid><orcidid>https://orcid.org/0000-0001-8692-5087</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2020-08, Vol.20 (8), p.5909-5915 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2423797737 |
source | ACS Publications |
title | Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Exciton%20Gain%20and%20Stimulated%20Emission%20Across%20the%20Infrared%20Telecom%20Band%20from%20Robust%20Heavily%20Doped%20PbS%20Colloidal%20Quantum%20Dots&rft.jtitle=Nano%20letters&rft.au=Christodoulou,%20Sotirios&rft.date=2020-08-12&rft.volume=20&rft.issue=8&rft.spage=5909&rft.epage=5915&rft.pages=5909-5915&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c01859&rft_dat=%3Cproquest_cross%3E2423797737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423797737&rft_id=info:pmid/&rfr_iscdi=true |