Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials
Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration,...
Gespeichert in:
Veröffentlicht in: | Trends in biotechnology (Regular ed.) 2021-01, Vol.39 (1), p.90-104 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | 1 |
container_start_page | 90 |
container_title | Trends in biotechnology (Regular ed.) |
container_volume | 39 |
creator | Amorim, Sara Reis, Celso A. Reis, Rui L. Pires, Ricardo A. |
description | Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its interaction with specific cellular receptors or by tuning the mechanical properties of the ECM. This review summarizes the recent advances on strategies used to mimic the HA present in the ECM to study healthy or pathological cellular behavior. This includes the development of HA-based 2D and 3D in vitro tissue models for the seeding and encapsulation of cells, respectively, and HA particles as carriers for the targeted delivery of therapeutic agents.
The extracellular matrix is composed of hyaluronan of different molecular weights that play different roles in cellular proliferation, migration, and differentiation.The dysregulated accumulation of hyaluronan alters the mechanical and biochemical properties of the extracellular matrix and it is associated with several pathological states.Biomaterials can be engineered using the native hyaluronan backbone or chemically modified to target cells via specific cellular receptors, such as CD44.2D surfaces with controlled topography and 3D hydrogels with tuned mechanical properties and hyaluronan composition can be designed to mimic the bioactivity of this glycosaminoglycan in the ECM. |
doi_str_mv | 10.1016/j.tibtech.2020.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423516130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779920301670</els_id><sourcerecordid>2423516130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-68e65bec13378658e4a2fee9469a1473589b79e33149047ca88106e0ae42e7403</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EouXxE0CRWFgSrmPHjqeKVkCRqFjobLnuLbjKo9gJgn-PqxYGFqazfPfco4-QCwoZBSpu1lnnFh3atyyHHDIQGQA7IENaSpUyUOKQDCMnUymVGpCTENYQCanoMRmwXBRcymJIRnefnTcWq6qvjE9mpvPuM5m52tmQzINrXpPpl6l63zamSccm4DIZu7Y2HXpnqnBGjlYx8Hyfp2R-f_cymaZPzw-Pk9un1HJRdKkoURQLtJQxWYqiRG7yFaLiQhnKJStKtZAKGaNcAZfWlCUFgWCQ5yg5sFNyvevd-Pa9x9Dp2oXtbNNg2wed85wVVFC2Ra_-oOu2901cFykJgoKUPFLFjrK-DcHjSm-8q43_0hT01rBe671hvTWsQejoL95d7tv7RY3L36sfpREY7QCMOj4ceh2sw8bi0nm0nV627p8X3wi_jOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470610774</pqid></control><display><type>article</type><title>Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials</title><source>Elsevier ScienceDirect Journals</source><creator>Amorim, Sara ; Reis, Celso A. ; Reis, Rui L. ; Pires, Ricardo A.</creator><creatorcontrib>Amorim, Sara ; Reis, Celso A. ; Reis, Rui L. ; Pires, Ricardo A.</creatorcontrib><description>Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its interaction with specific cellular receptors or by tuning the mechanical properties of the ECM. This review summarizes the recent advances on strategies used to mimic the HA present in the ECM to study healthy or pathological cellular behavior. This includes the development of HA-based 2D and 3D in vitro tissue models for the seeding and encapsulation of cells, respectively, and HA particles as carriers for the targeted delivery of therapeutic agents.
The extracellular matrix is composed of hyaluronan of different molecular weights that play different roles in cellular proliferation, migration, and differentiation.The dysregulated accumulation of hyaluronan alters the mechanical and biochemical properties of the extracellular matrix and it is associated with several pathological states.Biomaterials can be engineered using the native hyaluronan backbone or chemically modified to target cells via specific cellular receptors, such as CD44.2D surfaces with controlled topography and 3D hydrogels with tuned mechanical properties and hyaluronan composition can be designed to mimic the bioactivity of this glycosaminoglycan in the ECM.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2020.06.003</identifier><identifier>PMID: 32654775</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>2D surfaces ; 3D models ; Biomaterials ; Biomechanics ; Biomedical materials ; Cancer ; Cell adhesion & migration ; Cell differentiation ; Cell growth ; Cell migration ; Cell proliferation ; Chemical compounds ; Chondroitin sulfate ; Differentiation (biology) ; Extracellular matrix ; Heparan sulfate ; Homeostasis ; hyaluronan ; Hyaluronic acid ; Hydration ; Hydrogels ; Kinases ; Mechanical properties ; Motility ; particles ; Pharmacology ; Physical properties ; Physiology ; Proteins ; Receptor mechanisms ; Three dimensional models ; Tissue engineering ; Tumors ; Two dimensional models</subject><ispartof>Trends in biotechnology (Regular ed.), 2021-01, Vol.39 (1), p.90-104</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><rights>2020. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-68e65bec13378658e4a2fee9469a1473589b79e33149047ca88106e0ae42e7403</citedby><cites>FETCH-LOGICAL-c465t-68e65bec13378658e4a2fee9469a1473589b79e33149047ca88106e0ae42e7403</cites><orcidid>0000-0002-4295-6129 ; 0000-0002-6150-9412 ; 0000-0002-0286-6639 ; 0000-0002-9197-0138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167779920301670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32654775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amorim, Sara</creatorcontrib><creatorcontrib>Reis, Celso A.</creatorcontrib><creatorcontrib>Reis, Rui L.</creatorcontrib><creatorcontrib>Pires, Ricardo A.</creatorcontrib><title>Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its interaction with specific cellular receptors or by tuning the mechanical properties of the ECM. This review summarizes the recent advances on strategies used to mimic the HA present in the ECM to study healthy or pathological cellular behavior. This includes the development of HA-based 2D and 3D in vitro tissue models for the seeding and encapsulation of cells, respectively, and HA particles as carriers for the targeted delivery of therapeutic agents.
The extracellular matrix is composed of hyaluronan of different molecular weights that play different roles in cellular proliferation, migration, and differentiation.The dysregulated accumulation of hyaluronan alters the mechanical and biochemical properties of the extracellular matrix and it is associated with several pathological states.Biomaterials can be engineered using the native hyaluronan backbone or chemically modified to target cells via specific cellular receptors, such as CD44.2D surfaces with controlled topography and 3D hydrogels with tuned mechanical properties and hyaluronan composition can be designed to mimic the bioactivity of this glycosaminoglycan in the ECM.</description><subject>2D surfaces</subject><subject>3D models</subject><subject>Biomaterials</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Cancer</subject><subject>Cell adhesion & migration</subject><subject>Cell differentiation</subject><subject>Cell growth</subject><subject>Cell migration</subject><subject>Cell proliferation</subject><subject>Chemical compounds</subject><subject>Chondroitin sulfate</subject><subject>Differentiation (biology)</subject><subject>Extracellular matrix</subject><subject>Heparan sulfate</subject><subject>Homeostasis</subject><subject>hyaluronan</subject><subject>Hyaluronic acid</subject><subject>Hydration</subject><subject>Hydrogels</subject><subject>Kinases</subject><subject>Mechanical properties</subject><subject>Motility</subject><subject>particles</subject><subject>Pharmacology</subject><subject>Physical properties</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Receptor mechanisms</subject><subject>Three dimensional models</subject><subject>Tissue engineering</subject><subject>Tumors</subject><subject>Two dimensional models</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkDtPwzAUhS0EouXxE0CRWFgSrmPHjqeKVkCRqFjobLnuLbjKo9gJgn-PqxYGFqazfPfco4-QCwoZBSpu1lnnFh3atyyHHDIQGQA7IENaSpUyUOKQDCMnUymVGpCTENYQCanoMRmwXBRcymJIRnefnTcWq6qvjE9mpvPuM5m52tmQzINrXpPpl6l63zamSccm4DIZu7Y2HXpnqnBGjlYx8Hyfp2R-f_cymaZPzw-Pk9un1HJRdKkoURQLtJQxWYqiRG7yFaLiQhnKJStKtZAKGaNcAZfWlCUFgWCQ5yg5sFNyvevd-Pa9x9Dp2oXtbNNg2wed85wVVFC2Ra_-oOu2901cFykJgoKUPFLFjrK-DcHjSm-8q43_0hT01rBe671hvTWsQejoL95d7tv7RY3L36sfpREY7QCMOj4ceh2sw8bi0nm0nV627p8X3wi_jOM</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Amorim, Sara</creator><creator>Reis, Celso A.</creator><creator>Reis, Rui L.</creator><creator>Pires, Ricardo A.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4295-6129</orcidid><orcidid>https://orcid.org/0000-0002-6150-9412</orcidid><orcidid>https://orcid.org/0000-0002-0286-6639</orcidid><orcidid>https://orcid.org/0000-0002-9197-0138</orcidid></search><sort><creationdate>202101</creationdate><title>Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials</title><author>Amorim, Sara ; Reis, Celso A. ; Reis, Rui L. ; Pires, Ricardo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-68e65bec13378658e4a2fee9469a1473589b79e33149047ca88106e0ae42e7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D surfaces</topic><topic>3D models</topic><topic>Biomaterials</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Cancer</topic><topic>Cell adhesion & migration</topic><topic>Cell differentiation</topic><topic>Cell growth</topic><topic>Cell migration</topic><topic>Cell proliferation</topic><topic>Chemical compounds</topic><topic>Chondroitin sulfate</topic><topic>Differentiation (biology)</topic><topic>Extracellular matrix</topic><topic>Heparan sulfate</topic><topic>Homeostasis</topic><topic>hyaluronan</topic><topic>Hyaluronic acid</topic><topic>Hydration</topic><topic>Hydrogels</topic><topic>Kinases</topic><topic>Mechanical properties</topic><topic>Motility</topic><topic>particles</topic><topic>Pharmacology</topic><topic>Physical properties</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Receptor mechanisms</topic><topic>Three dimensional models</topic><topic>Tissue engineering</topic><topic>Tumors</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amorim, Sara</creatorcontrib><creatorcontrib>Reis, Celso A.</creatorcontrib><creatorcontrib>Reis, Rui L.</creatorcontrib><creatorcontrib>Pires, Ricardo A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amorim, Sara</au><au>Reis, Celso A.</au><au>Reis, Rui L.</au><au>Pires, Ricardo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>39</volume><issue>1</issue><spage>90</spage><epage>104</epage><pages>90-104</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its interaction with specific cellular receptors or by tuning the mechanical properties of the ECM. This review summarizes the recent advances on strategies used to mimic the HA present in the ECM to study healthy or pathological cellular behavior. This includes the development of HA-based 2D and 3D in vitro tissue models for the seeding and encapsulation of cells, respectively, and HA particles as carriers for the targeted delivery of therapeutic agents.
The extracellular matrix is composed of hyaluronan of different molecular weights that play different roles in cellular proliferation, migration, and differentiation.The dysregulated accumulation of hyaluronan alters the mechanical and biochemical properties of the extracellular matrix and it is associated with several pathological states.Biomaterials can be engineered using the native hyaluronan backbone or chemically modified to target cells via specific cellular receptors, such as CD44.2D surfaces with controlled topography and 3D hydrogels with tuned mechanical properties and hyaluronan composition can be designed to mimic the bioactivity of this glycosaminoglycan in the ECM.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32654775</pmid><doi>10.1016/j.tibtech.2020.06.003</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4295-6129</orcidid><orcidid>https://orcid.org/0000-0002-6150-9412</orcidid><orcidid>https://orcid.org/0000-0002-0286-6639</orcidid><orcidid>https://orcid.org/0000-0002-9197-0138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7799 |
ispartof | Trends in biotechnology (Regular ed.), 2021-01, Vol.39 (1), p.90-104 |
issn | 0167-7799 1879-3096 |
language | eng |
recordid | cdi_proquest_miscellaneous_2423516130 |
source | Elsevier ScienceDirect Journals |
subjects | 2D surfaces 3D models Biomaterials Biomechanics Biomedical materials Cancer Cell adhesion & migration Cell differentiation Cell growth Cell migration Cell proliferation Chemical compounds Chondroitin sulfate Differentiation (biology) Extracellular matrix Heparan sulfate Homeostasis hyaluronan Hyaluronic acid Hydration Hydrogels Kinases Mechanical properties Motility particles Pharmacology Physical properties Physiology Proteins Receptor mechanisms Three dimensional models Tissue engineering Tumors Two dimensional models |
title | Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracellular%20Matrix%20Mimics%20Using%20Hyaluronan-Based%20Biomaterials&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Amorim,%20Sara&rft.date=2021-01&rft.volume=39&rft.issue=1&rft.spage=90&rft.epage=104&rft.pages=90-104&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2020.06.003&rft_dat=%3Cproquest_cross%3E2423516130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470610774&rft_id=info:pmid/32654775&rft_els_id=S0167779920301670&rfr_iscdi=true |