Reactivity, Selectivity, and Stability of Zeolite‐Based Catalysts for Methane Dehydroaromatization

Non‐oxidative dehydroaromatization is arguably the most promising process for the direct upgrading of cheap and abundant methane to liquid hydrocarbons. This reaction has not been commercialized yet because of the suboptimal activity and swift deactivation of benchmark Mo‐zeolite catalysts. This pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-11, Vol.32 (44), p.e2002565-n/a, Article 2002565
Hauptverfasser: Kosinov, Nikolay, Hensen, Emiel J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page e2002565
container_title Advanced materials (Weinheim)
container_volume 32
creator Kosinov, Nikolay
Hensen, Emiel J. M.
description Non‐oxidative dehydroaromatization is arguably the most promising process for the direct upgrading of cheap and abundant methane to liquid hydrocarbons. This reaction has not been commercialized yet because of the suboptimal activity and swift deactivation of benchmark Mo‐zeolite catalysts. This progress report represents an elaboration on the recent developments in understanding of zeolite‐based catalytic materials for high‐temperature non‐oxidative dehydroaromatization of methane. It is specifically focused on recent studies, relevant to the materials chemistry and elucidating i) the structure of active species in working catalysts; ii) the complex molecular pathways underlying the mechanism of selective conversion of methane to benzene; iii) structure, evolution and role of coke species; and iv) process intensification strategies to improve the deactivation resistance and overall performance of the catalysts. Finally, unsolved challenges in this field of research are outlined and an outlook is provided on promising directions toward improving the activity, stability, and selectivity of methane dehydroaromatization catalysts. Development of efficient catalytic materials for the direct conversion of natural gas to liquid hydrocarbons is a challenging task, which is one of the chemical “holy grails”. Recent progress in the synthesis, characterization, and understanding of zeolite‐based catalysts for methane dehydroaromatization to benzene is reviewed together with the unsolved issues and future prospects in the field.
doi_str_mv 10.1002/adma.202002565
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423514549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456775315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4275-398ff101da5d0927a1720b8dc8e9c7847309d64042f192b84fe00f000a8d20353</originalsourceid><addsrcrecordid>eNqNkM1u1DAUhS0EokNhyzoSGySa4dqxHXs5TcuP1AqJwoZN5ImvVVeZuNgeUFjxCDwjT4KHqQaJDSwsnyt95-rcQ8hTCksKwF4auzFLBqxoIcU9sqCC0ZqDFvfJAnQjai25OiKPUroBAC1BPiRHDZNCapALYt-jGbL_4vN8Ul3hiIfBTLa6ymbtxzJWwVWfMBSJP7__ODUJbdWZbMY55VS5EKtLzNdmwuoMr2cbg4lhY7L_Vl6YHpMHzowJn9z9x-Tjq_MP3Zv64t3rt93qoh44a0XdaOUcBWqNsKBZa2jLYK3soFAPreJtA9pKDpw5qtlacYcArlxllGXQiOaYPN_vvY3h8xZT7jc-DTiOJVjYpp5x1gjKBdcFffYXehO2cSrpCiVk24qG7hYu99QQQ0oRXX8b_cbEuafQ7_rvd_33h_6LQe0NX3EdXBo8TgMeTCWqUK0GKouisvP5dz1d2E65WF_8v7XQ-o72I87_iNWvzi5Xf0L-ArM8qIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456775315</pqid></control><display><type>article</type><title>Reactivity, Selectivity, and Stability of Zeolite‐Based Catalysts for Methane Dehydroaromatization</title><source>Access via Wiley Online Library</source><creator>Kosinov, Nikolay ; Hensen, Emiel J. M.</creator><creatorcontrib>Kosinov, Nikolay ; Hensen, Emiel J. M.</creatorcontrib><description>Non‐oxidative dehydroaromatization is arguably the most promising process for the direct upgrading of cheap and abundant methane to liquid hydrocarbons. This reaction has not been commercialized yet because of the suboptimal activity and swift deactivation of benchmark Mo‐zeolite catalysts. This progress report represents an elaboration on the recent developments in understanding of zeolite‐based catalytic materials for high‐temperature non‐oxidative dehydroaromatization of methane. It is specifically focused on recent studies, relevant to the materials chemistry and elucidating i) the structure of active species in working catalysts; ii) the complex molecular pathways underlying the mechanism of selective conversion of methane to benzene; iii) structure, evolution and role of coke species; and iv) process intensification strategies to improve the deactivation resistance and overall performance of the catalysts. Finally, unsolved challenges in this field of research are outlined and an outlook is provided on promising directions toward improving the activity, stability, and selectivity of methane dehydroaromatization catalysts. Development of efficient catalytic materials for the direct conversion of natural gas to liquid hydrocarbons is a challenging task, which is one of the chemical “holy grails”. Recent progress in the synthesis, characterization, and understanding of zeolite‐based catalysts for methane dehydroaromatization to benzene is reviewed together with the unsolved issues and future prospects in the field.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002565</identifier><identifier>PMID: 32656906</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Benzene ; catalyst characterization ; Catalysts ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Commercialization ; Deactivation ; Materials Science ; Materials Science, Multidisciplinary ; Methane ; methane conversion ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Process intensification ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Selectivity ; shape selectivity ; Stability ; Technology ; zeolite catalysts ; Zeolites</subject><ispartof>Advanced materials (Weinheim), 2020-11, Vol.32 (44), p.e2002565-n/a, Article 2002565</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>106</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000587901600016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4275-398ff101da5d0927a1720b8dc8e9c7847309d64042f192b84fe00f000a8d20353</citedby><cites>FETCH-LOGICAL-c4275-398ff101da5d0927a1720b8dc8e9c7847309d64042f192b84fe00f000a8d20353</cites><orcidid>0000-0002-9754-2417 ; 0000-0001-8520-4886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202002565$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202002565$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kosinov, Nikolay</creatorcontrib><creatorcontrib>Hensen, Emiel J. M.</creatorcontrib><title>Reactivity, Selectivity, and Stability of Zeolite‐Based Catalysts for Methane Dehydroaromatization</title><title>Advanced materials (Weinheim)</title><addtitle>ADV MATER</addtitle><description>Non‐oxidative dehydroaromatization is arguably the most promising process for the direct upgrading of cheap and abundant methane to liquid hydrocarbons. This reaction has not been commercialized yet because of the suboptimal activity and swift deactivation of benchmark Mo‐zeolite catalysts. This progress report represents an elaboration on the recent developments in understanding of zeolite‐based catalytic materials for high‐temperature non‐oxidative dehydroaromatization of methane. It is specifically focused on recent studies, relevant to the materials chemistry and elucidating i) the structure of active species in working catalysts; ii) the complex molecular pathways underlying the mechanism of selective conversion of methane to benzene; iii) structure, evolution and role of coke species; and iv) process intensification strategies to improve the deactivation resistance and overall performance of the catalysts. Finally, unsolved challenges in this field of research are outlined and an outlook is provided on promising directions toward improving the activity, stability, and selectivity of methane dehydroaromatization catalysts. Development of efficient catalytic materials for the direct conversion of natural gas to liquid hydrocarbons is a challenging task, which is one of the chemical “holy grails”. Recent progress in the synthesis, characterization, and understanding of zeolite‐based catalysts for methane dehydroaromatization to benzene is reviewed together with the unsolved issues and future prospects in the field.</description><subject>Benzene</subject><subject>catalyst characterization</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Commercialization</subject><subject>Deactivation</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Methane</subject><subject>methane conversion</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Process intensification</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Selectivity</subject><subject>shape selectivity</subject><subject>Stability</subject><subject>Technology</subject><subject>zeolite catalysts</subject><subject>Zeolites</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkM1u1DAUhS0EokNhyzoSGySa4dqxHXs5TcuP1AqJwoZN5ImvVVeZuNgeUFjxCDwjT4KHqQaJDSwsnyt95-rcQ8hTCksKwF4auzFLBqxoIcU9sqCC0ZqDFvfJAnQjai25OiKPUroBAC1BPiRHDZNCapALYt-jGbL_4vN8Ul3hiIfBTLa6ymbtxzJWwVWfMBSJP7__ODUJbdWZbMY55VS5EKtLzNdmwuoMr2cbg4lhY7L_Vl6YHpMHzowJn9z9x-Tjq_MP3Zv64t3rt93qoh44a0XdaOUcBWqNsKBZa2jLYK3soFAPreJtA9pKDpw5qtlacYcArlxllGXQiOaYPN_vvY3h8xZT7jc-DTiOJVjYpp5x1gjKBdcFffYXehO2cSrpCiVk24qG7hYu99QQQ0oRXX8b_cbEuafQ7_rvd_33h_6LQe0NX3EdXBo8TgMeTCWqUK0GKouisvP5dz1d2E65WF_8v7XQ-o72I87_iNWvzi5Xf0L-ArM8qIc</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kosinov, Nikolay</creator><creator>Hensen, Emiel J. M.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9754-2417</orcidid><orcidid>https://orcid.org/0000-0001-8520-4886</orcidid></search><sort><creationdate>20201101</creationdate><title>Reactivity, Selectivity, and Stability of Zeolite‐Based Catalysts for Methane Dehydroaromatization</title><author>Kosinov, Nikolay ; Hensen, Emiel J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4275-398ff101da5d0927a1720b8dc8e9c7847309d64042f192b84fe00f000a8d20353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benzene</topic><topic>catalyst characterization</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Commercialization</topic><topic>Deactivation</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Methane</topic><topic>methane conversion</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Process intensification</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Selectivity</topic><topic>shape selectivity</topic><topic>Stability</topic><topic>Technology</topic><topic>zeolite catalysts</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosinov, Nikolay</creatorcontrib><creatorcontrib>Hensen, Emiel J. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosinov, Nikolay</au><au>Hensen, Emiel J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivity, Selectivity, and Stability of Zeolite‐Based Catalysts for Methane Dehydroaromatization</atitle><jtitle>Advanced materials (Weinheim)</jtitle><stitle>ADV MATER</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>44</issue><spage>e2002565</spage><epage>n/a</epage><pages>e2002565-n/a</pages><artnum>2002565</artnum><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Non‐oxidative dehydroaromatization is arguably the most promising process for the direct upgrading of cheap and abundant methane to liquid hydrocarbons. This reaction has not been commercialized yet because of the suboptimal activity and swift deactivation of benchmark Mo‐zeolite catalysts. This progress report represents an elaboration on the recent developments in understanding of zeolite‐based catalytic materials for high‐temperature non‐oxidative dehydroaromatization of methane. It is specifically focused on recent studies, relevant to the materials chemistry and elucidating i) the structure of active species in working catalysts; ii) the complex molecular pathways underlying the mechanism of selective conversion of methane to benzene; iii) structure, evolution and role of coke species; and iv) process intensification strategies to improve the deactivation resistance and overall performance of the catalysts. Finally, unsolved challenges in this field of research are outlined and an outlook is provided on promising directions toward improving the activity, stability, and selectivity of methane dehydroaromatization catalysts. Development of efficient catalytic materials for the direct conversion of natural gas to liquid hydrocarbons is a challenging task, which is one of the chemical “holy grails”. Recent progress in the synthesis, characterization, and understanding of zeolite‐based catalysts for methane dehydroaromatization to benzene is reviewed together with the unsolved issues and future prospects in the field.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>32656906</pmid><doi>10.1002/adma.202002565</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9754-2417</orcidid><orcidid>https://orcid.org/0000-0001-8520-4886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-11, Vol.32 (44), p.e2002565-n/a, Article 2002565
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2423514549
source Access via Wiley Online Library
subjects Benzene
catalyst characterization
Catalysts
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Commercialization
Deactivation
Materials Science
Materials Science, Multidisciplinary
Methane
methane conversion
Nanoscience & Nanotechnology
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Process intensification
Science & Technology
Science & Technology - Other Topics
Selectivity
shape selectivity
Stability
Technology
zeolite catalysts
Zeolites
title Reactivity, Selectivity, and Stability of Zeolite‐Based Catalysts for Methane Dehydroaromatization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivity,%20Selectivity,%20and%20Stability%20of%20Zeolite%E2%80%90Based%20Catalysts%20for%20Methane%20Dehydroaromatization&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kosinov,%20Nikolay&rft.date=2020-11-01&rft.volume=32&rft.issue=44&rft.spage=e2002565&rft.epage=n/a&rft.pages=e2002565-n/a&rft.artnum=2002565&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002565&rft_dat=%3Cproquest_cross%3E2456775315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456775315&rft_id=info:pmid/32656906&rfr_iscdi=true