Cyclotide Structures Revealed by NMR, with a Little Help from X‐ray Crystallography

This review highlights the predominant role that NMR has had in determining the structures of cyclotides, a fascinating class of macrocyclic peptides found in plants. Cyclotides contain a cystine knot, a compact structural motif that is constrained by three disulfide bonds and able to resist chemica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2020-12, Vol.21 (24), p.3463-3475
Hauptverfasser: Handley, Thomas N. G., Wang, Conan K., Harvey, Peta J., Lawrence, Nicole, Craik, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3475
container_issue 24
container_start_page 3463
container_title Chembiochem : a European journal of chemical biology
container_volume 21
creator Handley, Thomas N. G.
Wang, Conan K.
Harvey, Peta J.
Lawrence, Nicole
Craik, David J.
description This review highlights the predominant role that NMR has had in determining the structures of cyclotides, a fascinating class of macrocyclic peptides found in plants. Cyclotides contain a cystine knot, a compact structural motif that is constrained by three disulfide bonds and able to resist chemical and biological degradation. Their resistance to proteolytic degradation has made cyclotides appealing as drug leads. Herein, we examine the developments that led to the identification and conclusive determination of the disulfide connectivity of cyclotides and describe in detail the structural features of exemplar cyclotides. We also review the role that X‐ray crystallography has played in resolving cyclotide structures and describe how racemic crystallography opened up the possibility of obtaining previously inaccessible X‐ray structures of cyclotides. Untying the knot: We explore the role that NMR spectroscopy has played in the solution of cyclotide structures, with a focus on the disulfide connectivity of the cystine knot. The cystine knot is a tight arrangement of three disulfide bonds at the core of cyclotides which contributes to their exceptional stability and to their appeal as therapeutic agents.
doi_str_mv 10.1002/cbic.202000315
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423513967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423513967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-c327f5ab5d74dfd1cbee8d06697cc3bb8ce137f25cb4baf06ae4e5104f2260493</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgWgprIzIEgsDLb7FqUeIgCIVkLhIbJHtnNBUblPshCobj8Az8iQEtYDEwnTO8J1fRz9C-5QMKCHsxJrCDhhhhBBOow3UpYKrfiw531zvgrG4g3ZCmLZGSU63UYczGUklZRc9Jo11ZVVkgO8rX9uq9hDwHbyCdpBh0-Cb67tjvCyqCdZ4XFSVAzwCt8C5L2f46ePt3esGJ74JlXaufPZ6MWl20VauXYC99eyhx4vzh2TUH99eXiWn474VlER9y1mcR9pEWSyyPKPWAAwzIqWKreXGDC1QHucsskYYnROpQUBEicgZk0Qo3kNHq9yFL19qCFU6K4IF5_QcyjqkTDAeUa5k3NLDP3Ra1n7eftcqOVRKMElbNVgp68sQPOTpwhcz7ZuUkvSr8PSr8PSn8PbgYB1bmxlkP_y74RaoFVgWDpp_4tLk7Cr5Df8Ey0KMwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468994261</pqid></control><display><type>article</type><title>Cyclotide Structures Revealed by NMR, with a Little Help from X‐ray Crystallography</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Handley, Thomas N. G. ; Wang, Conan K. ; Harvey, Peta J. ; Lawrence, Nicole ; Craik, David J.</creator><creatorcontrib>Handley, Thomas N. G. ; Wang, Conan K. ; Harvey, Peta J. ; Lawrence, Nicole ; Craik, David J.</creatorcontrib><description>This review highlights the predominant role that NMR has had in determining the structures of cyclotides, a fascinating class of macrocyclic peptides found in plants. Cyclotides contain a cystine knot, a compact structural motif that is constrained by three disulfide bonds and able to resist chemical and biological degradation. Their resistance to proteolytic degradation has made cyclotides appealing as drug leads. Herein, we examine the developments that led to the identification and conclusive determination of the disulfide connectivity of cyclotides and describe in detail the structural features of exemplar cyclotides. We also review the role that X‐ray crystallography has played in resolving cyclotide structures and describe how racemic crystallography opened up the possibility of obtaining previously inaccessible X‐ray structures of cyclotides. Untying the knot: We explore the role that NMR spectroscopy has played in the solution of cyclotide structures, with a focus on the disulfide connectivity of the cystine knot. The cystine knot is a tight arrangement of three disulfide bonds at the core of cyclotides which contributes to their exceptional stability and to their appeal as therapeutic agents.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202000315</identifier><identifier>PMID: 32656966</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biodegradation ; cis-proline ; Crystallography ; cyclotides ; Cystine ; cystine knot ; Degradation ; Disulfide bonds ; disulfide connectivity ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Peptides ; Proteolysis ; racemic crystallography</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-12, Vol.21 (24), p.3463-3475</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-c327f5ab5d74dfd1cbee8d06697cc3bb8ce137f25cb4baf06ae4e5104f2260493</citedby><cites>FETCH-LOGICAL-c4105-c327f5ab5d74dfd1cbee8d06697cc3bb8ce137f25cb4baf06ae4e5104f2260493</cites><orcidid>0000-0003-0007-6796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202000315$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202000315$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32656966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Handley, Thomas N. G.</creatorcontrib><creatorcontrib>Wang, Conan K.</creatorcontrib><creatorcontrib>Harvey, Peta J.</creatorcontrib><creatorcontrib>Lawrence, Nicole</creatorcontrib><creatorcontrib>Craik, David J.</creatorcontrib><title>Cyclotide Structures Revealed by NMR, with a Little Help from X‐ray Crystallography</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>This review highlights the predominant role that NMR has had in determining the structures of cyclotides, a fascinating class of macrocyclic peptides found in plants. Cyclotides contain a cystine knot, a compact structural motif that is constrained by three disulfide bonds and able to resist chemical and biological degradation. Their resistance to proteolytic degradation has made cyclotides appealing as drug leads. Herein, we examine the developments that led to the identification and conclusive determination of the disulfide connectivity of cyclotides and describe in detail the structural features of exemplar cyclotides. We also review the role that X‐ray crystallography has played in resolving cyclotide structures and describe how racemic crystallography opened up the possibility of obtaining previously inaccessible X‐ray structures of cyclotides. Untying the knot: We explore the role that NMR spectroscopy has played in the solution of cyclotide structures, with a focus on the disulfide connectivity of the cystine knot. The cystine knot is a tight arrangement of three disulfide bonds at the core of cyclotides which contributes to their exceptional stability and to their appeal as therapeutic agents.</description><subject>Biodegradation</subject><subject>cis-proline</subject><subject>Crystallography</subject><subject>cyclotides</subject><subject>Cystine</subject><subject>cystine knot</subject><subject>Degradation</subject><subject>Disulfide bonds</subject><subject>disulfide connectivity</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Proteolysis</subject><subject>racemic crystallography</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0LtOwzAUBmALgWgprIzIEgsDLb7FqUeIgCIVkLhIbJHtnNBUblPshCobj8Az8iQEtYDEwnTO8J1fRz9C-5QMKCHsxJrCDhhhhBBOow3UpYKrfiw531zvgrG4g3ZCmLZGSU63UYczGUklZRc9Jo11ZVVkgO8rX9uq9hDwHbyCdpBh0-Cb67tjvCyqCdZ4XFSVAzwCt8C5L2f46ePt3esGJ74JlXaufPZ6MWl20VauXYC99eyhx4vzh2TUH99eXiWn474VlER9y1mcR9pEWSyyPKPWAAwzIqWKreXGDC1QHucsskYYnROpQUBEicgZk0Qo3kNHq9yFL19qCFU6K4IF5_QcyjqkTDAeUa5k3NLDP3Ra1n7eftcqOVRKMElbNVgp68sQPOTpwhcz7ZuUkvSr8PSr8PSn8PbgYB1bmxlkP_y74RaoFVgWDpp_4tLk7Cr5Df8Ey0KMwA</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Handley, Thomas N. G.</creator><creator>Wang, Conan K.</creator><creator>Harvey, Peta J.</creator><creator>Lawrence, Nicole</creator><creator>Craik, David J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0007-6796</orcidid></search><sort><creationdate>20201211</creationdate><title>Cyclotide Structures Revealed by NMR, with a Little Help from X‐ray Crystallography</title><author>Handley, Thomas N. G. ; Wang, Conan K. ; Harvey, Peta J. ; Lawrence, Nicole ; Craik, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-c327f5ab5d74dfd1cbee8d06697cc3bb8ce137f25cb4baf06ae4e5104f2260493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodegradation</topic><topic>cis-proline</topic><topic>Crystallography</topic><topic>cyclotides</topic><topic>Cystine</topic><topic>cystine knot</topic><topic>Degradation</topic><topic>Disulfide bonds</topic><topic>disulfide connectivity</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Proteolysis</topic><topic>racemic crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handley, Thomas N. G.</creatorcontrib><creatorcontrib>Wang, Conan K.</creatorcontrib><creatorcontrib>Harvey, Peta J.</creatorcontrib><creatorcontrib>Lawrence, Nicole</creatorcontrib><creatorcontrib>Craik, David J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handley, Thomas N. G.</au><au>Wang, Conan K.</au><au>Harvey, Peta J.</au><au>Lawrence, Nicole</au><au>Craik, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclotide Structures Revealed by NMR, with a Little Help from X‐ray Crystallography</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2020-12-11</date><risdate>2020</risdate><volume>21</volume><issue>24</issue><spage>3463</spage><epage>3475</epage><pages>3463-3475</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>This review highlights the predominant role that NMR has had in determining the structures of cyclotides, a fascinating class of macrocyclic peptides found in plants. Cyclotides contain a cystine knot, a compact structural motif that is constrained by three disulfide bonds and able to resist chemical and biological degradation. Their resistance to proteolytic degradation has made cyclotides appealing as drug leads. Herein, we examine the developments that led to the identification and conclusive determination of the disulfide connectivity of cyclotides and describe in detail the structural features of exemplar cyclotides. We also review the role that X‐ray crystallography has played in resolving cyclotide structures and describe how racemic crystallography opened up the possibility of obtaining previously inaccessible X‐ray structures of cyclotides. Untying the knot: We explore the role that NMR spectroscopy has played in the solution of cyclotide structures, with a focus on the disulfide connectivity of the cystine knot. The cystine knot is a tight arrangement of three disulfide bonds at the core of cyclotides which contributes to their exceptional stability and to their appeal as therapeutic agents.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32656966</pmid><doi>10.1002/cbic.202000315</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0007-6796</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2020-12, Vol.21 (24), p.3463-3475
issn 1439-4227
1439-7633
language eng
recordid cdi_proquest_miscellaneous_2423513967
source Wiley Online Library Journals Frontfile Complete
subjects Biodegradation
cis-proline
Crystallography
cyclotides
Cystine
cystine knot
Degradation
Disulfide bonds
disulfide connectivity
NMR
NMR spectroscopy
Nuclear magnetic resonance
Peptides
Proteolysis
racemic crystallography
title Cyclotide Structures Revealed by NMR, with a Little Help from X‐ray Crystallography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclotide%20Structures%20Revealed%20by%20NMR,%20with%20a%20Little%20Help%20from%20X%E2%80%90ray%20Crystallography&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Handley,%20Thomas%20N.%20G.&rft.date=2020-12-11&rft.volume=21&rft.issue=24&rft.spage=3463&rft.epage=3475&rft.pages=3463-3475&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202000315&rft_dat=%3Cproquest_cross%3E2423513967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468994261&rft_id=info:pmid/32656966&rfr_iscdi=true