Observation and control of maximal Chern numbers in a chiral topological semimetal

Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-07, Vol.369 (6500), p.179-183
Hauptverfasser: Schröter, Niels B. M., Stolz, Samuel, Manna, Kaustuv, de Juan, Fernando, Vergniory, Maia G., Krieger, Jonas A., Pei, Ding, Schmitt, Thorsten, Dudin, Pavel, Kim, Timur K., Cacho, Cephise, Bradlyn, Barry, Borrmann, Horst, Schmidt, Marcus, Widmer, Roland, Strocov, Vladimir N., Felser, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 6500
container_start_page 179
container_title Science (American Association for the Advancement of Science)
container_volume 369
creator Schröter, Niels B. M.
Stolz, Samuel
Manna, Kaustuv
de Juan, Fernando
Vergniory, Maia G.
Krieger, Jonas A.
Pei, Ding
Schmitt, Thorsten
Dudin, Pavel
Kim, Timur K.
Cacho, Cephise
Bradlyn, Barry
Borrmann, Horst
Schmidt, Marcus
Widmer, Roland
Strocov, Vladimir N.
Felser, Claudia
description Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values are also theoretically possible. Schröter et al. predicted that the chiral material palladium gallium (PdGa) would have a Chern number of 4, and they confirmed that prediction using photoemission experiments. Interestingly, the sign of the Chern number was opposite for the two enantiomers of PdGa. Science , this issue p. 179 Angle-resolved photoemission indicates that chiral crystalline PdGa has a Chern number of 4. Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number ( C ). Nodal band crossings with linear dispersion are expected to have at most | C | = 4 , which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.
doi_str_mv 10.1126/science.aaz3480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423065681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423065681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2c8cbe84e1f7f782defc3d34cfbf7a3e552fe9d37e1735843e73fd20a09e045c3</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKtrtwE3bqbNYzLJLKX4AqEguh4ymRubMpPUZEbUX29Ku3J1LpyPy-FD6JqSBaWsWibjwBtYaP3LS0VO0IySWhQ1I_wUzQjhVaGIFOfoIqUtIbmr-Qy9rtsE8UuPLnisfYdN8GMMPQ4WD_rbDbrHqw1Ej_00tBATdpnDZuNibsawC334cCbfCQY3wKj7S3RmdZ_g6phz9P5w_7Z6Kl7Wj8-ru5fC8EqNBTPKtKBKoFZaqVgH1vCOl8a2VmoOQjALdcclUMmFKjlIbjtGNKmBlMLwObo9_N3F8DlBGpvBJQN9rz2EKTWsZJxUolI0ozf_0G2Yos_r9hSjQlaSZ2p5oEwMKUWwzS5mAfGnoaTZO26OjpujY_4H7klyng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422157673</pqid></control><display><type>article</type><title>Observation and control of maximal Chern numbers in a chiral topological semimetal</title><source>American Association for the Advancement of Science</source><creator>Schröter, Niels B. M. ; Stolz, Samuel ; Manna, Kaustuv ; de Juan, Fernando ; Vergniory, Maia G. ; Krieger, Jonas A. ; Pei, Ding ; Schmitt, Thorsten ; Dudin, Pavel ; Kim, Timur K. ; Cacho, Cephise ; Bradlyn, Barry ; Borrmann, Horst ; Schmidt, Marcus ; Widmer, Roland ; Strocov, Vladimir N. ; Felser, Claudia</creator><creatorcontrib>Schröter, Niels B. M. ; Stolz, Samuel ; Manna, Kaustuv ; de Juan, Fernando ; Vergniory, Maia G. ; Krieger, Jonas A. ; Pei, Ding ; Schmitt, Thorsten ; Dudin, Pavel ; Kim, Timur K. ; Cacho, Cephise ; Bradlyn, Barry ; Borrmann, Horst ; Schmidt, Marcus ; Widmer, Roland ; Strocov, Vladimir N. ; Felser, Claudia</creatorcontrib><description>Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values are also theoretically possible. Schröter et al. predicted that the chiral material palladium gallium (PdGa) would have a Chern number of 4, and they confirmed that prediction using photoemission experiments. Interestingly, the sign of the Chern number was opposite for the two enantiomers of PdGa. Science , this issue p. 179 Angle-resolved photoemission indicates that chiral crystalline PdGa has a Chern number of 4. Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number ( C ). Nodal band crossings with linear dispersion are expected to have at most | C | = 4 , which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaz3480</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Chiral materials ; Crystals ; Electronic structure ; Enantiomers ; Gallium ; Handedness ; Metalloids ; Palladium ; Photoelectric emission ; Topology</subject><ispartof>Science (American Association for the Advancement of Science), 2020-07, Vol.369 (6500), p.179-183</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2c8cbe84e1f7f782defc3d34cfbf7a3e552fe9d37e1735843e73fd20a09e045c3</citedby><cites>FETCH-LOGICAL-c368t-2c8cbe84e1f7f782defc3d34cfbf7a3e552fe9d37e1735843e73fd20a09e045c3</cites><orcidid>0000-0002-5971-0395 ; 0000-0001-6327-1076 ; 0000-0001-6159-4576 ; 0000-0001-6852-1484 ; 0000-0002-9226-3136 ; 0000-0003-3337-5530 ; 0000-0002-3597-680X ; 0000-0002-8200-2063 ; 0000-0002-9442-2321 ; 0000-0003-4201-4462 ; 0000-0002-0058-5817 ; 0000-0002-1397-3261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids></links><search><creatorcontrib>Schröter, Niels B. M.</creatorcontrib><creatorcontrib>Stolz, Samuel</creatorcontrib><creatorcontrib>Manna, Kaustuv</creatorcontrib><creatorcontrib>de Juan, Fernando</creatorcontrib><creatorcontrib>Vergniory, Maia G.</creatorcontrib><creatorcontrib>Krieger, Jonas A.</creatorcontrib><creatorcontrib>Pei, Ding</creatorcontrib><creatorcontrib>Schmitt, Thorsten</creatorcontrib><creatorcontrib>Dudin, Pavel</creatorcontrib><creatorcontrib>Kim, Timur K.</creatorcontrib><creatorcontrib>Cacho, Cephise</creatorcontrib><creatorcontrib>Bradlyn, Barry</creatorcontrib><creatorcontrib>Borrmann, Horst</creatorcontrib><creatorcontrib>Schmidt, Marcus</creatorcontrib><creatorcontrib>Widmer, Roland</creatorcontrib><creatorcontrib>Strocov, Vladimir N.</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><title>Observation and control of maximal Chern numbers in a chiral topological semimetal</title><title>Science (American Association for the Advancement of Science)</title><description>Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values are also theoretically possible. Schröter et al. predicted that the chiral material palladium gallium (PdGa) would have a Chern number of 4, and they confirmed that prediction using photoemission experiments. Interestingly, the sign of the Chern number was opposite for the two enantiomers of PdGa. Science , this issue p. 179 Angle-resolved photoemission indicates that chiral crystalline PdGa has a Chern number of 4. Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number ( C ). Nodal band crossings with linear dispersion are expected to have at most | C | = 4 , which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.</description><subject>Chiral materials</subject><subject>Crystals</subject><subject>Electronic structure</subject><subject>Enantiomers</subject><subject>Gallium</subject><subject>Handedness</subject><subject>Metalloids</subject><subject>Palladium</subject><subject>Photoelectric emission</subject><subject>Topology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWKtrtwE3bqbNYzLJLKX4AqEguh4ymRubMpPUZEbUX29Ku3J1LpyPy-FD6JqSBaWsWibjwBtYaP3LS0VO0IySWhQ1I_wUzQjhVaGIFOfoIqUtIbmr-Qy9rtsE8UuPLnisfYdN8GMMPQ4WD_rbDbrHqw1Ej_00tBATdpnDZuNibsawC334cCbfCQY3wKj7S3RmdZ_g6phz9P5w_7Z6Kl7Wj8-ru5fC8EqNBTPKtKBKoFZaqVgH1vCOl8a2VmoOQjALdcclUMmFKjlIbjtGNKmBlMLwObo9_N3F8DlBGpvBJQN9rz2EKTWsZJxUolI0ozf_0G2Yos_r9hSjQlaSZ2p5oEwMKUWwzS5mAfGnoaTZO26OjpujY_4H7klyng</recordid><startdate>20200710</startdate><enddate>20200710</enddate><creator>Schröter, Niels B. M.</creator><creator>Stolz, Samuel</creator><creator>Manna, Kaustuv</creator><creator>de Juan, Fernando</creator><creator>Vergniory, Maia G.</creator><creator>Krieger, Jonas A.</creator><creator>Pei, Ding</creator><creator>Schmitt, Thorsten</creator><creator>Dudin, Pavel</creator><creator>Kim, Timur K.</creator><creator>Cacho, Cephise</creator><creator>Bradlyn, Barry</creator><creator>Borrmann, Horst</creator><creator>Schmidt, Marcus</creator><creator>Widmer, Roland</creator><creator>Strocov, Vladimir N.</creator><creator>Felser, Claudia</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5971-0395</orcidid><orcidid>https://orcid.org/0000-0001-6327-1076</orcidid><orcidid>https://orcid.org/0000-0001-6159-4576</orcidid><orcidid>https://orcid.org/0000-0001-6852-1484</orcidid><orcidid>https://orcid.org/0000-0002-9226-3136</orcidid><orcidid>https://orcid.org/0000-0003-3337-5530</orcidid><orcidid>https://orcid.org/0000-0002-3597-680X</orcidid><orcidid>https://orcid.org/0000-0002-8200-2063</orcidid><orcidid>https://orcid.org/0000-0002-9442-2321</orcidid><orcidid>https://orcid.org/0000-0003-4201-4462</orcidid><orcidid>https://orcid.org/0000-0002-0058-5817</orcidid><orcidid>https://orcid.org/0000-0002-1397-3261</orcidid></search><sort><creationdate>20200710</creationdate><title>Observation and control of maximal Chern numbers in a chiral topological semimetal</title><author>Schröter, Niels B. M. ; Stolz, Samuel ; Manna, Kaustuv ; de Juan, Fernando ; Vergniory, Maia G. ; Krieger, Jonas A. ; Pei, Ding ; Schmitt, Thorsten ; Dudin, Pavel ; Kim, Timur K. ; Cacho, Cephise ; Bradlyn, Barry ; Borrmann, Horst ; Schmidt, Marcus ; Widmer, Roland ; Strocov, Vladimir N. ; Felser, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2c8cbe84e1f7f782defc3d34cfbf7a3e552fe9d37e1735843e73fd20a09e045c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chiral materials</topic><topic>Crystals</topic><topic>Electronic structure</topic><topic>Enantiomers</topic><topic>Gallium</topic><topic>Handedness</topic><topic>Metalloids</topic><topic>Palladium</topic><topic>Photoelectric emission</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schröter, Niels B. M.</creatorcontrib><creatorcontrib>Stolz, Samuel</creatorcontrib><creatorcontrib>Manna, Kaustuv</creatorcontrib><creatorcontrib>de Juan, Fernando</creatorcontrib><creatorcontrib>Vergniory, Maia G.</creatorcontrib><creatorcontrib>Krieger, Jonas A.</creatorcontrib><creatorcontrib>Pei, Ding</creatorcontrib><creatorcontrib>Schmitt, Thorsten</creatorcontrib><creatorcontrib>Dudin, Pavel</creatorcontrib><creatorcontrib>Kim, Timur K.</creatorcontrib><creatorcontrib>Cacho, Cephise</creatorcontrib><creatorcontrib>Bradlyn, Barry</creatorcontrib><creatorcontrib>Borrmann, Horst</creatorcontrib><creatorcontrib>Schmidt, Marcus</creatorcontrib><creatorcontrib>Widmer, Roland</creatorcontrib><creatorcontrib>Strocov, Vladimir N.</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schröter, Niels B. M.</au><au>Stolz, Samuel</au><au>Manna, Kaustuv</au><au>de Juan, Fernando</au><au>Vergniory, Maia G.</au><au>Krieger, Jonas A.</au><au>Pei, Ding</au><au>Schmitt, Thorsten</au><au>Dudin, Pavel</au><au>Kim, Timur K.</au><au>Cacho, Cephise</au><au>Bradlyn, Barry</au><au>Borrmann, Horst</au><au>Schmidt, Marcus</au><au>Widmer, Roland</au><au>Strocov, Vladimir N.</au><au>Felser, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation and control of maximal Chern numbers in a chiral topological semimetal</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-07-10</date><risdate>2020</risdate><volume>369</volume><issue>6500</issue><spage>179</spage><epage>183</epage><pages>179-183</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values are also theoretically possible. Schröter et al. predicted that the chiral material palladium gallium (PdGa) would have a Chern number of 4, and they confirmed that prediction using photoemission experiments. Interestingly, the sign of the Chern number was opposite for the two enantiomers of PdGa. Science , this issue p. 179 Angle-resolved photoemission indicates that chiral crystalline PdGa has a Chern number of 4. Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number ( C ). Nodal band crossings with linear dispersion are expected to have at most | C | = 4 , which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aaz3480</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5971-0395</orcidid><orcidid>https://orcid.org/0000-0001-6327-1076</orcidid><orcidid>https://orcid.org/0000-0001-6159-4576</orcidid><orcidid>https://orcid.org/0000-0001-6852-1484</orcidid><orcidid>https://orcid.org/0000-0002-9226-3136</orcidid><orcidid>https://orcid.org/0000-0003-3337-5530</orcidid><orcidid>https://orcid.org/0000-0002-3597-680X</orcidid><orcidid>https://orcid.org/0000-0002-8200-2063</orcidid><orcidid>https://orcid.org/0000-0002-9442-2321</orcidid><orcidid>https://orcid.org/0000-0003-4201-4462</orcidid><orcidid>https://orcid.org/0000-0002-0058-5817</orcidid><orcidid>https://orcid.org/0000-0002-1397-3261</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-07, Vol.369 (6500), p.179-183
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2423065681
source American Association for the Advancement of Science
subjects Chiral materials
Crystals
Electronic structure
Enantiomers
Gallium
Handedness
Metalloids
Palladium
Photoelectric emission
Topology
title Observation and control of maximal Chern numbers in a chiral topological semimetal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20and%20control%20of%20maximal%20Chern%20numbers%20in%20a%20chiral%20topological%20semimetal&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Schr%C3%B6ter,%20Niels%20B.%20M.&rft.date=2020-07-10&rft.volume=369&rft.issue=6500&rft.spage=179&rft.epage=183&rft.pages=179-183&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaz3480&rft_dat=%3Cproquest_cross%3E2423065681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422157673&rft_id=info:pmid/&rfr_iscdi=true