Observation and control of maximal Chern numbers in a chiral topological semimetal
Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values ar...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-07, Vol.369 (6500), p.179-183 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 6500 |
container_start_page | 179 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 369 |
creator | Schröter, Niels B. M. Stolz, Samuel Manna, Kaustuv de Juan, Fernando Vergniory, Maia G. Krieger, Jonas A. Pei, Ding Schmitt, Thorsten Dudin, Pavel Kim, Timur K. Cacho, Cephise Bradlyn, Barry Borrmann, Horst Schmidt, Marcus Widmer, Roland Strocov, Vladimir N. Felser, Claudia |
description | Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values are also theoretically possible. Schröter
et al.
predicted that the chiral material palladium gallium (PdGa) would have a Chern number of 4, and they confirmed that prediction using photoemission experiments. Interestingly, the sign of the Chern number was opposite for the two enantiomers of PdGa.
Science
, this issue p.
179
Angle-resolved photoemission indicates that chiral crystalline PdGa has a Chern number of 4.
Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number (
C
). Nodal band crossings with linear dispersion are expected to have at most
|
C
|
=
4
, which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers. |
doi_str_mv | 10.1126/science.aaz3480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423065681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423065681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2c8cbe84e1f7f782defc3d34cfbf7a3e552fe9d37e1735843e73fd20a09e045c3</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKtrtwE3bqbNYzLJLKX4AqEguh4ymRubMpPUZEbUX29Ku3J1LpyPy-FD6JqSBaWsWibjwBtYaP3LS0VO0IySWhQ1I_wUzQjhVaGIFOfoIqUtIbmr-Qy9rtsE8UuPLnisfYdN8GMMPQ4WD_rbDbrHqw1Ej_00tBATdpnDZuNibsawC334cCbfCQY3wKj7S3RmdZ_g6phz9P5w_7Z6Kl7Wj8-ru5fC8EqNBTPKtKBKoFZaqVgH1vCOl8a2VmoOQjALdcclUMmFKjlIbjtGNKmBlMLwObo9_N3F8DlBGpvBJQN9rz2EKTWsZJxUolI0ozf_0G2Yos_r9hSjQlaSZ2p5oEwMKUWwzS5mAfGnoaTZO26OjpujY_4H7klyng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422157673</pqid></control><display><type>article</type><title>Observation and control of maximal Chern numbers in a chiral topological semimetal</title><source>American Association for the Advancement of Science</source><creator>Schröter, Niels B. M. ; Stolz, Samuel ; Manna, Kaustuv ; de Juan, Fernando ; Vergniory, Maia G. ; Krieger, Jonas A. ; Pei, Ding ; Schmitt, Thorsten ; Dudin, Pavel ; Kim, Timur K. ; Cacho, Cephise ; Bradlyn, Barry ; Borrmann, Horst ; Schmidt, Marcus ; Widmer, Roland ; Strocov, Vladimir N. ; Felser, Claudia</creator><creatorcontrib>Schröter, Niels B. M. ; Stolz, Samuel ; Manna, Kaustuv ; de Juan, Fernando ; Vergniory, Maia G. ; Krieger, Jonas A. ; Pei, Ding ; Schmitt, Thorsten ; Dudin, Pavel ; Kim, Timur K. ; Cacho, Cephise ; Bradlyn, Barry ; Borrmann, Horst ; Schmidt, Marcus ; Widmer, Roland ; Strocov, Vladimir N. ; Felser, Claudia</creatorcontrib><description>Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values are also theoretically possible. Schröter
et al.
predicted that the chiral material palladium gallium (PdGa) would have a Chern number of 4, and they confirmed that prediction using photoemission experiments. Interestingly, the sign of the Chern number was opposite for the two enantiomers of PdGa.
Science
, this issue p.
179
Angle-resolved photoemission indicates that chiral crystalline PdGa has a Chern number of 4.
Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number (
C
). Nodal band crossings with linear dispersion are expected to have at most
|
C
|
=
4
, which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaz3480</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Chiral materials ; Crystals ; Electronic structure ; Enantiomers ; Gallium ; Handedness ; Metalloids ; Palladium ; Photoelectric emission ; Topology</subject><ispartof>Science (American Association for the Advancement of Science), 2020-07, Vol.369 (6500), p.179-183</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2c8cbe84e1f7f782defc3d34cfbf7a3e552fe9d37e1735843e73fd20a09e045c3</citedby><cites>FETCH-LOGICAL-c368t-2c8cbe84e1f7f782defc3d34cfbf7a3e552fe9d37e1735843e73fd20a09e045c3</cites><orcidid>0000-0002-5971-0395 ; 0000-0001-6327-1076 ; 0000-0001-6159-4576 ; 0000-0001-6852-1484 ; 0000-0002-9226-3136 ; 0000-0003-3337-5530 ; 0000-0002-3597-680X ; 0000-0002-8200-2063 ; 0000-0002-9442-2321 ; 0000-0003-4201-4462 ; 0000-0002-0058-5817 ; 0000-0002-1397-3261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids></links><search><creatorcontrib>Schröter, Niels B. M.</creatorcontrib><creatorcontrib>Stolz, Samuel</creatorcontrib><creatorcontrib>Manna, Kaustuv</creatorcontrib><creatorcontrib>de Juan, Fernando</creatorcontrib><creatorcontrib>Vergniory, Maia G.</creatorcontrib><creatorcontrib>Krieger, Jonas A.</creatorcontrib><creatorcontrib>Pei, Ding</creatorcontrib><creatorcontrib>Schmitt, Thorsten</creatorcontrib><creatorcontrib>Dudin, Pavel</creatorcontrib><creatorcontrib>Kim, Timur K.</creatorcontrib><creatorcontrib>Cacho, Cephise</creatorcontrib><creatorcontrib>Bradlyn, Barry</creatorcontrib><creatorcontrib>Borrmann, Horst</creatorcontrib><creatorcontrib>Schmidt, Marcus</creatorcontrib><creatorcontrib>Widmer, Roland</creatorcontrib><creatorcontrib>Strocov, Vladimir N.</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><title>Observation and control of maximal Chern numbers in a chiral topological semimetal</title><title>Science (American Association for the Advancement of Science)</title><description>Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values are also theoretically possible. Schröter
et al.
predicted that the chiral material palladium gallium (PdGa) would have a Chern number of 4, and they confirmed that prediction using photoemission experiments. Interestingly, the sign of the Chern number was opposite for the two enantiomers of PdGa.
Science
, this issue p.
179
Angle-resolved photoemission indicates that chiral crystalline PdGa has a Chern number of 4.
Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number (
C
). Nodal band crossings with linear dispersion are expected to have at most
|
C
|
=
4
, which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.</description><subject>Chiral materials</subject><subject>Crystals</subject><subject>Electronic structure</subject><subject>Enantiomers</subject><subject>Gallium</subject><subject>Handedness</subject><subject>Metalloids</subject><subject>Palladium</subject><subject>Photoelectric emission</subject><subject>Topology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWKtrtwE3bqbNYzLJLKX4AqEguh4ymRubMpPUZEbUX29Ku3J1LpyPy-FD6JqSBaWsWibjwBtYaP3LS0VO0IySWhQ1I_wUzQjhVaGIFOfoIqUtIbmr-Qy9rtsE8UuPLnisfYdN8GMMPQ4WD_rbDbrHqw1Ej_00tBATdpnDZuNibsawC334cCbfCQY3wKj7S3RmdZ_g6phz9P5w_7Z6Kl7Wj8-ru5fC8EqNBTPKtKBKoFZaqVgH1vCOl8a2VmoOQjALdcclUMmFKjlIbjtGNKmBlMLwObo9_N3F8DlBGpvBJQN9rz2EKTWsZJxUolI0ozf_0G2Yos_r9hSjQlaSZ2p5oEwMKUWwzS5mAfGnoaTZO26OjpujY_4H7klyng</recordid><startdate>20200710</startdate><enddate>20200710</enddate><creator>Schröter, Niels B. M.</creator><creator>Stolz, Samuel</creator><creator>Manna, Kaustuv</creator><creator>de Juan, Fernando</creator><creator>Vergniory, Maia G.</creator><creator>Krieger, Jonas A.</creator><creator>Pei, Ding</creator><creator>Schmitt, Thorsten</creator><creator>Dudin, Pavel</creator><creator>Kim, Timur K.</creator><creator>Cacho, Cephise</creator><creator>Bradlyn, Barry</creator><creator>Borrmann, Horst</creator><creator>Schmidt, Marcus</creator><creator>Widmer, Roland</creator><creator>Strocov, Vladimir N.</creator><creator>Felser, Claudia</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5971-0395</orcidid><orcidid>https://orcid.org/0000-0001-6327-1076</orcidid><orcidid>https://orcid.org/0000-0001-6159-4576</orcidid><orcidid>https://orcid.org/0000-0001-6852-1484</orcidid><orcidid>https://orcid.org/0000-0002-9226-3136</orcidid><orcidid>https://orcid.org/0000-0003-3337-5530</orcidid><orcidid>https://orcid.org/0000-0002-3597-680X</orcidid><orcidid>https://orcid.org/0000-0002-8200-2063</orcidid><orcidid>https://orcid.org/0000-0002-9442-2321</orcidid><orcidid>https://orcid.org/0000-0003-4201-4462</orcidid><orcidid>https://orcid.org/0000-0002-0058-5817</orcidid><orcidid>https://orcid.org/0000-0002-1397-3261</orcidid></search><sort><creationdate>20200710</creationdate><title>Observation and control of maximal Chern numbers in a chiral topological semimetal</title><author>Schröter, Niels B. M. ; Stolz, Samuel ; Manna, Kaustuv ; de Juan, Fernando ; Vergniory, Maia G. ; Krieger, Jonas A. ; Pei, Ding ; Schmitt, Thorsten ; Dudin, Pavel ; Kim, Timur K. ; Cacho, Cephise ; Bradlyn, Barry ; Borrmann, Horst ; Schmidt, Marcus ; Widmer, Roland ; Strocov, Vladimir N. ; Felser, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2c8cbe84e1f7f782defc3d34cfbf7a3e552fe9d37e1735843e73fd20a09e045c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chiral materials</topic><topic>Crystals</topic><topic>Electronic structure</topic><topic>Enantiomers</topic><topic>Gallium</topic><topic>Handedness</topic><topic>Metalloids</topic><topic>Palladium</topic><topic>Photoelectric emission</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schröter, Niels B. M.</creatorcontrib><creatorcontrib>Stolz, Samuel</creatorcontrib><creatorcontrib>Manna, Kaustuv</creatorcontrib><creatorcontrib>de Juan, Fernando</creatorcontrib><creatorcontrib>Vergniory, Maia G.</creatorcontrib><creatorcontrib>Krieger, Jonas A.</creatorcontrib><creatorcontrib>Pei, Ding</creatorcontrib><creatorcontrib>Schmitt, Thorsten</creatorcontrib><creatorcontrib>Dudin, Pavel</creatorcontrib><creatorcontrib>Kim, Timur K.</creatorcontrib><creatorcontrib>Cacho, Cephise</creatorcontrib><creatorcontrib>Bradlyn, Barry</creatorcontrib><creatorcontrib>Borrmann, Horst</creatorcontrib><creatorcontrib>Schmidt, Marcus</creatorcontrib><creatorcontrib>Widmer, Roland</creatorcontrib><creatorcontrib>Strocov, Vladimir N.</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schröter, Niels B. M.</au><au>Stolz, Samuel</au><au>Manna, Kaustuv</au><au>de Juan, Fernando</au><au>Vergniory, Maia G.</au><au>Krieger, Jonas A.</au><au>Pei, Ding</au><au>Schmitt, Thorsten</au><au>Dudin, Pavel</au><au>Kim, Timur K.</au><au>Cacho, Cephise</au><au>Bradlyn, Barry</au><au>Borrmann, Horst</au><au>Schmidt, Marcus</au><au>Widmer, Roland</au><au>Strocov, Vladimir N.</au><au>Felser, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation and control of maximal Chern numbers in a chiral topological semimetal</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-07-10</date><risdate>2020</risdate><volume>369</volume><issue>6500</issue><spage>179</spage><epage>183</epage><pages>179-183</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Topologically nontrivial electronic structure can often be characterized by the Chern number, the value of which is related to the magnitude of some of the exotic effects predicted to occur in such systems. Many topological phases discovered so far have a Chern number of 1 or 2, but higher values are also theoretically possible. Schröter
et al.
predicted that the chiral material palladium gallium (PdGa) would have a Chern number of 4, and they confirmed that prediction using photoemission experiments. Interestingly, the sign of the Chern number was opposite for the two enantiomers of PdGa.
Science
, this issue p.
179
Angle-resolved photoemission indicates that chiral crystalline PdGa has a Chern number of 4.
Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number (
C
). Nodal band crossings with linear dispersion are expected to have at most
|
C
|
=
4
, which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aaz3480</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5971-0395</orcidid><orcidid>https://orcid.org/0000-0001-6327-1076</orcidid><orcidid>https://orcid.org/0000-0001-6159-4576</orcidid><orcidid>https://orcid.org/0000-0001-6852-1484</orcidid><orcidid>https://orcid.org/0000-0002-9226-3136</orcidid><orcidid>https://orcid.org/0000-0003-3337-5530</orcidid><orcidid>https://orcid.org/0000-0002-3597-680X</orcidid><orcidid>https://orcid.org/0000-0002-8200-2063</orcidid><orcidid>https://orcid.org/0000-0002-9442-2321</orcidid><orcidid>https://orcid.org/0000-0003-4201-4462</orcidid><orcidid>https://orcid.org/0000-0002-0058-5817</orcidid><orcidid>https://orcid.org/0000-0002-1397-3261</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-07, Vol.369 (6500), p.179-183 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2423065681 |
source | American Association for the Advancement of Science |
subjects | Chiral materials Crystals Electronic structure Enantiomers Gallium Handedness Metalloids Palladium Photoelectric emission Topology |
title | Observation and control of maximal Chern numbers in a chiral topological semimetal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20and%20control%20of%20maximal%20Chern%20numbers%20in%20a%20chiral%20topological%20semimetal&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Schr%C3%B6ter,%20Niels%20B.%20M.&rft.date=2020-07-10&rft.volume=369&rft.issue=6500&rft.spage=179&rft.epage=183&rft.pages=179-183&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaz3480&rft_dat=%3Cproquest_cross%3E2423065681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422157673&rft_id=info:pmid/&rfr_iscdi=true |