Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies

Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-08, Vol.12 (31), p.34848-34857
Hauptverfasser: Wang, Jianyin, Liu, Haigang, Yang, Qi, Hu, Bei, Geng, Fushan, Zhao, Chong, Lin, Yang, Hu, Bingwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34857
container_issue 31
container_start_page 34848
container_title ACS applied materials & interfaces
container_volume 12
creator Wang, Jianyin
Liu, Haigang
Yang, Qi
Hu, Bei
Geng, Fushan
Zhao, Chong
Lin, Yang
Hu, Bingwen
description Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling stability hinder their application, especially since the underlying mechanisms for the above two issues are still unclear. In this work, copper substitution is used to suppress the Jahn–Teller effect of Mn3+ and affect the corresponding lattice structure. The water sensitivity and charge compensation mechanism were carefully investigated. Results demonstrate that water sensitivity of the electrode is related to the order of Na+/vacancy in the Na interlayers since water molecules are more easily inserted into the charged state electrodes, but the tendency for the water uptake does not increase with Na+ extraction. Furthermore, Mn2+ forms on the surface of electrodes in the initial discharge process, and the redox reaction in the bulk is predominantly between Mn3+ and Mn4+. Cu-substituted in TM layer affects the arrangement of Na+/vacancy and suppresses the Mn2+ formation on the Na0.7Mn0.9Cu0.1O2 electrode that results in superior air stability and better storage properties.
doi_str_mv 10.1021/acsami.0c07244
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423065515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423065515</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-f720ebae9534b162caaba2f57e1181c6617ce3387e15a36b491e290a053b3d393</originalsourceid><addsrcrecordid>eNo9UU1P3DAQtapWKt32ytlHqJStP5NNbzRdIBIUpAVxjCbOpDFKbBo7rfhF_E28WtTTfL73RvMIOeZszZng38AEmOyaGVYIpd6RI14qlW2EFu__50p9JJ9CeGQsl4LpI_JSLdlP_4QdvRXZL2Dr4tqxdVktifRG0J3v7DJltXf0B8SI8zOtIA6-Q_rPxoFu3QDOJPR2RBNnbwacrIGR3uLc-3naD7_T2gX7e4i0n_1EHyDR0B2mXrR_bXym4Dq6W-YeDNJrd1LXp_R8j402ye7i0lkMn8mHHsaAX97iityfb--qy-zq5qKuzq4y4FrGrC8Ewxaw1FK1PBcGoAXR6wI533CT57wwKOUm1Rpk3qqSoygZMC1b2clSrsjJgfdp9n8WDLGZbDA4juDQL6ERSkiWa53UVuTrYTU9vnn0y-zSYQ1nzd6N5uBG8-aGfAXJIH3r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423065515</pqid></control><display><type>article</type><title>Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies</title><source>ACS Publications</source><creator>Wang, Jianyin ; Liu, Haigang ; Yang, Qi ; Hu, Bei ; Geng, Fushan ; Zhao, Chong ; Lin, Yang ; Hu, Bingwen</creator><creatorcontrib>Wang, Jianyin ; Liu, Haigang ; Yang, Qi ; Hu, Bei ; Geng, Fushan ; Zhao, Chong ; Lin, Yang ; Hu, Bingwen</creatorcontrib><description>Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling stability hinder their application, especially since the underlying mechanisms for the above two issues are still unclear. In this work, copper substitution is used to suppress the Jahn–Teller effect of Mn3+ and affect the corresponding lattice structure. The water sensitivity and charge compensation mechanism were carefully investigated. Results demonstrate that water sensitivity of the electrode is related to the order of Na+/vacancy in the Na interlayers since water molecules are more easily inserted into the charged state electrodes, but the tendency for the water uptake does not increase with Na+ extraction. Furthermore, Mn2+ forms on the surface of electrodes in the initial discharge process, and the redox reaction in the bulk is predominantly between Mn3+ and Mn4+. Cu-substituted in TM layer affects the arrangement of Na+/vacancy and suppresses the Mn2+ formation on the Na0.7Mn0.9Cu0.1O2 electrode that results in superior air stability and better storage properties.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c07244</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2020-08, Vol.12 (31), p.34848-34857</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7528-8999 ; 0000-0003-0694-0178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c07244$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c07244$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wang, Jianyin</creatorcontrib><creatorcontrib>Liu, Haigang</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Hu, Bei</creatorcontrib><creatorcontrib>Geng, Fushan</creatorcontrib><creatorcontrib>Zhao, Chong</creatorcontrib><creatorcontrib>Lin, Yang</creatorcontrib><creatorcontrib>Hu, Bingwen</creatorcontrib><title>Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling stability hinder their application, especially since the underlying mechanisms for the above two issues are still unclear. In this work, copper substitution is used to suppress the Jahn–Teller effect of Mn3+ and affect the corresponding lattice structure. The water sensitivity and charge compensation mechanism were carefully investigated. Results demonstrate that water sensitivity of the electrode is related to the order of Na+/vacancy in the Na interlayers since water molecules are more easily inserted into the charged state electrodes, but the tendency for the water uptake does not increase with Na+ extraction. Furthermore, Mn2+ forms on the surface of electrodes in the initial discharge process, and the redox reaction in the bulk is predominantly between Mn3+ and Mn4+. Cu-substituted in TM layer affects the arrangement of Na+/vacancy and suppresses the Mn2+ formation on the Na0.7Mn0.9Cu0.1O2 electrode that results in superior air stability and better storage properties.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UU1P3DAQtapWKt32ytlHqJStP5NNbzRdIBIUpAVxjCbOpDFKbBo7rfhF_E28WtTTfL73RvMIOeZszZng38AEmOyaGVYIpd6RI14qlW2EFu__50p9JJ9CeGQsl4LpI_JSLdlP_4QdvRXZL2Dr4tqxdVktifRG0J3v7DJltXf0B8SI8zOtIA6-Q_rPxoFu3QDOJPR2RBNnbwacrIGR3uLc-3naD7_T2gX7e4i0n_1EHyDR0B2mXrR_bXym4Dq6W-YeDNJrd1LXp_R8j402ye7i0lkMn8mHHsaAX97iityfb--qy-zq5qKuzq4y4FrGrC8Ewxaw1FK1PBcGoAXR6wI533CT57wwKOUm1Rpk3qqSoygZMC1b2clSrsjJgfdp9n8WDLGZbDA4juDQL6ERSkiWa53UVuTrYTU9vnn0y-zSYQ1nzd6N5uBG8-aGfAXJIH3r</recordid><startdate>20200805</startdate><enddate>20200805</enddate><creator>Wang, Jianyin</creator><creator>Liu, Haigang</creator><creator>Yang, Qi</creator><creator>Hu, Bei</creator><creator>Geng, Fushan</creator><creator>Zhao, Chong</creator><creator>Lin, Yang</creator><creator>Hu, Bingwen</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7528-8999</orcidid><orcidid>https://orcid.org/0000-0003-0694-0178</orcidid></search><sort><creationdate>20200805</creationdate><title>Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies</title><author>Wang, Jianyin ; Liu, Haigang ; Yang, Qi ; Hu, Bei ; Geng, Fushan ; Zhao, Chong ; Lin, Yang ; Hu, Bingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-f720ebae9534b162caaba2f57e1181c6617ce3387e15a36b491e290a053b3d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianyin</creatorcontrib><creatorcontrib>Liu, Haigang</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Hu, Bei</creatorcontrib><creatorcontrib>Geng, Fushan</creatorcontrib><creatorcontrib>Zhao, Chong</creatorcontrib><creatorcontrib>Lin, Yang</creatorcontrib><creatorcontrib>Hu, Bingwen</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianyin</au><au>Liu, Haigang</au><au>Yang, Qi</au><au>Hu, Bei</au><au>Geng, Fushan</au><au>Zhao, Chong</au><au>Lin, Yang</au><au>Hu, Bingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-08-05</date><risdate>2020</risdate><volume>12</volume><issue>31</issue><spage>34848</spage><epage>34857</epage><pages>34848-34857</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling stability hinder their application, especially since the underlying mechanisms for the above two issues are still unclear. In this work, copper substitution is used to suppress the Jahn–Teller effect of Mn3+ and affect the corresponding lattice structure. The water sensitivity and charge compensation mechanism were carefully investigated. Results demonstrate that water sensitivity of the electrode is related to the order of Na+/vacancy in the Na interlayers since water molecules are more easily inserted into the charged state electrodes, but the tendency for the water uptake does not increase with Na+ extraction. Furthermore, Mn2+ forms on the surface of electrodes in the initial discharge process, and the redox reaction in the bulk is predominantly between Mn3+ and Mn4+. Cu-substituted in TM layer affects the arrangement of Na+/vacancy and suppresses the Mn2+ formation on the Na0.7Mn0.9Cu0.1O2 electrode that results in superior air stability and better storage properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c07244</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7528-8999</orcidid><orcidid>https://orcid.org/0000-0003-0694-0178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-08, Vol.12 (31), p.34848-34857
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2423065515
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu-Doped%20P2-Na0.7Mn0.9Cu0.1O2%20Sodium-Ion%20Battery%20Cathode%20with%20Enhanced%20Electrochemical%20Performance:%20Insight%20from%20Water%20Sensitivity%20and%20Surface%20Mn(II)%20Formation%20Studies&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Jianyin&rft.date=2020-08-05&rft.volume=12&rft.issue=31&rft.spage=34848&rft.epage=34857&rft.pages=34848-34857&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c07244&rft_dat=%3Cproquest_acs_j%3E2423065515%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423065515&rft_id=info:pmid/&rfr_iscdi=true