Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies
Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling st...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-08, Vol.12 (31), p.34848-34857 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34857 |
---|---|
container_issue | 31 |
container_start_page | 34848 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Wang, Jianyin Liu, Haigang Yang, Qi Hu, Bei Geng, Fushan Zhao, Chong Lin, Yang Hu, Bingwen |
description | Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling stability hinder their application, especially since the underlying mechanisms for the above two issues are still unclear. In this work, copper substitution is used to suppress the Jahn–Teller effect of Mn3+ and affect the corresponding lattice structure. The water sensitivity and charge compensation mechanism were carefully investigated. Results demonstrate that water sensitivity of the electrode is related to the order of Na+/vacancy in the Na interlayers since water molecules are more easily inserted into the charged state electrodes, but the tendency for the water uptake does not increase with Na+ extraction. Furthermore, Mn2+ forms on the surface of electrodes in the initial discharge process, and the redox reaction in the bulk is predominantly between Mn3+ and Mn4+. Cu-substituted in TM layer affects the arrangement of Na+/vacancy and suppresses the Mn2+ formation on the Na0.7Mn0.9Cu0.1O2 electrode that results in superior air stability and better storage properties. |
doi_str_mv | 10.1021/acsami.0c07244 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423065515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423065515</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-f720ebae9534b162caaba2f57e1181c6617ce3387e15a36b491e290a053b3d393</originalsourceid><addsrcrecordid>eNo9UU1P3DAQtapWKt32ytlHqJStP5NNbzRdIBIUpAVxjCbOpDFKbBo7rfhF_E28WtTTfL73RvMIOeZszZng38AEmOyaGVYIpd6RI14qlW2EFu__50p9JJ9CeGQsl4LpI_JSLdlP_4QdvRXZL2Dr4tqxdVktifRG0J3v7DJltXf0B8SI8zOtIA6-Q_rPxoFu3QDOJPR2RBNnbwacrIGR3uLc-3naD7_T2gX7e4i0n_1EHyDR0B2mXrR_bXym4Dq6W-YeDNJrd1LXp_R8j402ye7i0lkMn8mHHsaAX97iityfb--qy-zq5qKuzq4y4FrGrC8Ewxaw1FK1PBcGoAXR6wI533CT57wwKOUm1Rpk3qqSoygZMC1b2clSrsjJgfdp9n8WDLGZbDA4juDQL6ERSkiWa53UVuTrYTU9vnn0y-zSYQ1nzd6N5uBG8-aGfAXJIH3r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423065515</pqid></control><display><type>article</type><title>Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies</title><source>ACS Publications</source><creator>Wang, Jianyin ; Liu, Haigang ; Yang, Qi ; Hu, Bei ; Geng, Fushan ; Zhao, Chong ; Lin, Yang ; Hu, Bingwen</creator><creatorcontrib>Wang, Jianyin ; Liu, Haigang ; Yang, Qi ; Hu, Bei ; Geng, Fushan ; Zhao, Chong ; Lin, Yang ; Hu, Bingwen</creatorcontrib><description>Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling stability hinder their application, especially since the underlying mechanisms for the above two issues are still unclear. In this work, copper substitution is used to suppress the Jahn–Teller effect of Mn3+ and affect the corresponding lattice structure. The water sensitivity and charge compensation mechanism were carefully investigated. Results demonstrate that water sensitivity of the electrode is related to the order of Na+/vacancy in the Na interlayers since water molecules are more easily inserted into the charged state electrodes, but the tendency for the water uptake does not increase with Na+ extraction. Furthermore, Mn2+ forms on the surface of electrodes in the initial discharge process, and the redox reaction in the bulk is predominantly between Mn3+ and Mn4+. Cu-substituted in TM layer affects the arrangement of Na+/vacancy and suppresses the Mn2+ formation on the Na0.7Mn0.9Cu0.1O2 electrode that results in superior air stability and better storage properties.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c07244</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2020-08, Vol.12 (31), p.34848-34857</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7528-8999 ; 0000-0003-0694-0178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c07244$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c07244$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wang, Jianyin</creatorcontrib><creatorcontrib>Liu, Haigang</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Hu, Bei</creatorcontrib><creatorcontrib>Geng, Fushan</creatorcontrib><creatorcontrib>Zhao, Chong</creatorcontrib><creatorcontrib>Lin, Yang</creatorcontrib><creatorcontrib>Hu, Bingwen</creatorcontrib><title>Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling stability hinder their application, especially since the underlying mechanisms for the above two issues are still unclear. In this work, copper substitution is used to suppress the Jahn–Teller effect of Mn3+ and affect the corresponding lattice structure. The water sensitivity and charge compensation mechanism were carefully investigated. Results demonstrate that water sensitivity of the electrode is related to the order of Na+/vacancy in the Na interlayers since water molecules are more easily inserted into the charged state electrodes, but the tendency for the water uptake does not increase with Na+ extraction. Furthermore, Mn2+ forms on the surface of electrodes in the initial discharge process, and the redox reaction in the bulk is predominantly between Mn3+ and Mn4+. Cu-substituted in TM layer affects the arrangement of Na+/vacancy and suppresses the Mn2+ formation on the Na0.7Mn0.9Cu0.1O2 electrode that results in superior air stability and better storage properties.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UU1P3DAQtapWKt32ytlHqJStP5NNbzRdIBIUpAVxjCbOpDFKbBo7rfhF_E28WtTTfL73RvMIOeZszZng38AEmOyaGVYIpd6RI14qlW2EFu__50p9JJ9CeGQsl4LpI_JSLdlP_4QdvRXZL2Dr4tqxdVktifRG0J3v7DJltXf0B8SI8zOtIA6-Q_rPxoFu3QDOJPR2RBNnbwacrIGR3uLc-3naD7_T2gX7e4i0n_1EHyDR0B2mXrR_bXym4Dq6W-YeDNJrd1LXp_R8j402ye7i0lkMn8mHHsaAX97iityfb--qy-zq5qKuzq4y4FrGrC8Ewxaw1FK1PBcGoAXR6wI533CT57wwKOUm1Rpk3qqSoygZMC1b2clSrsjJgfdp9n8WDLGZbDA4juDQL6ERSkiWa53UVuTrYTU9vnn0y-zSYQ1nzd6N5uBG8-aGfAXJIH3r</recordid><startdate>20200805</startdate><enddate>20200805</enddate><creator>Wang, Jianyin</creator><creator>Liu, Haigang</creator><creator>Yang, Qi</creator><creator>Hu, Bei</creator><creator>Geng, Fushan</creator><creator>Zhao, Chong</creator><creator>Lin, Yang</creator><creator>Hu, Bingwen</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7528-8999</orcidid><orcidid>https://orcid.org/0000-0003-0694-0178</orcidid></search><sort><creationdate>20200805</creationdate><title>Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies</title><author>Wang, Jianyin ; Liu, Haigang ; Yang, Qi ; Hu, Bei ; Geng, Fushan ; Zhao, Chong ; Lin, Yang ; Hu, Bingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-f720ebae9534b162caaba2f57e1181c6617ce3387e15a36b491e290a053b3d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianyin</creatorcontrib><creatorcontrib>Liu, Haigang</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Hu, Bei</creatorcontrib><creatorcontrib>Geng, Fushan</creatorcontrib><creatorcontrib>Zhao, Chong</creatorcontrib><creatorcontrib>Lin, Yang</creatorcontrib><creatorcontrib>Hu, Bingwen</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianyin</au><au>Liu, Haigang</au><au>Yang, Qi</au><au>Hu, Bei</au><au>Geng, Fushan</au><au>Zhao, Chong</au><au>Lin, Yang</au><au>Hu, Bingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-08-05</date><risdate>2020</risdate><volume>12</volume><issue>31</issue><spage>34848</spage><epage>34857</epage><pages>34848-34857</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Sodium-ion batteries (SIBs) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling stability hinder their application, especially since the underlying mechanisms for the above two issues are still unclear. In this work, copper substitution is used to suppress the Jahn–Teller effect of Mn3+ and affect the corresponding lattice structure. The water sensitivity and charge compensation mechanism were carefully investigated. Results demonstrate that water sensitivity of the electrode is related to the order of Na+/vacancy in the Na interlayers since water molecules are more easily inserted into the charged state electrodes, but the tendency for the water uptake does not increase with Na+ extraction. Furthermore, Mn2+ forms on the surface of electrodes in the initial discharge process, and the redox reaction in the bulk is predominantly between Mn3+ and Mn4+. Cu-substituted in TM layer affects the arrangement of Na+/vacancy and suppresses the Mn2+ formation on the Na0.7Mn0.9Cu0.1O2 electrode that results in superior air stability and better storage properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c07244</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7528-8999</orcidid><orcidid>https://orcid.org/0000-0003-0694-0178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-08, Vol.12 (31), p.34848-34857 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2423065515 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu-Doped%20P2-Na0.7Mn0.9Cu0.1O2%20Sodium-Ion%20Battery%20Cathode%20with%20Enhanced%20Electrochemical%20Performance:%20Insight%20from%20Water%20Sensitivity%20and%20Surface%20Mn(II)%20Formation%20Studies&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Jianyin&rft.date=2020-08-05&rft.volume=12&rft.issue=31&rft.spage=34848&rft.epage=34857&rft.pages=34848-34857&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c07244&rft_dat=%3Cproquest_acs_j%3E2423065515%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423065515&rft_id=info:pmid/&rfr_iscdi=true |