Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials

Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced biosystems 2017-12, Vol.1 (12), p.e1700161-n/a
Hauptverfasser: Zhang, Rongrong, Xia, Aiguo, Ni, Lei, Li, Feixuan, Jin, Zhenyu, Yang, Shuai, Jin, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e1700161
container_title Advanced biosystems
container_volume 1
creator Zhang, Rongrong
Xia, Aiguo
Ni, Lei
Li, Feixuan
Jin, Zhenyu
Yang, Shuai
Jin, Fan
description Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported. Unlike common persister cells that are highly tolerant to antibiotics, it is reported that the SSP cells can resist mechanical washings on the surfaces of various polymer materials and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. Most importantly, a general molecular mechanism is revealed by which an outer membrane protein crosslinks with polysaccharides to form gel‐like adhesion complexes that can exert extremely strong adhesion strength (up to 50 N mm−2). Therefore, these findings are urgently required for ongoing research focused on preparing antifouling biomedical materials. The identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported, which can resist mechanical washings on the surfaces of various polymer materials used in biomedical devices and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. These findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.
doi_str_mv 10.1002/adbi.201700161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423060084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423060084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3221-93c1995d18e6df7d4659eeba54142a9cbea1b18080b6d308140f67c4b2441edf3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EElVhZfbIkmI7juOMbaFQqRUV5WO0HOfSGKVJsVNV_e9xKQI2pnd3-r2n00PoipIBJYTd6CK3A0ZoSggV9AT1WCxElPJUnv6Zz9Gl9-8kMFLEMsl6qF52rm1WeFmBdnhStzu8AOet78DhkTZBrMZPcLjgOZhKN9boGr9pX9lm5XHb4K4CvNy6UhsIe4lftbPt1uNFW-_XIWauv1Jqf4HOyiBw-a199DK5ex4_RLPH--l4OItMzBiNstjQLEsKKkEUZVpwkWQAuU445UxnJgdNcyqJJLkoYiIpJ6VIDc8Z5xSKMu6j62PuxrUfW_CdWltvoK51A-ExxTiLiSBE8oAOjqhxrfcOSrVxdq3dXlGiDs2qQ7Pqp9lgyI6Gna1h_w-threj6a_3ExGhfT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423060084</pqid></control><display><type>article</type><title>Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials</title><source>Wiley Online Library All Journals</source><creator>Zhang, Rongrong ; Xia, Aiguo ; Ni, Lei ; Li, Feixuan ; Jin, Zhenyu ; Yang, Shuai ; Jin, Fan</creator><creatorcontrib>Zhang, Rongrong ; Xia, Aiguo ; Ni, Lei ; Li, Feixuan ; Jin, Zhenyu ; Yang, Shuai ; Jin, Fan</creatorcontrib><description>Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported. Unlike common persister cells that are highly tolerant to antibiotics, it is reported that the SSP cells can resist mechanical washings on the surfaces of various polymer materials and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. Most importantly, a general molecular mechanism is revealed by which an outer membrane protein crosslinks with polysaccharides to form gel‐like adhesion complexes that can exert extremely strong adhesion strength (up to 50 N mm−2). Therefore, these findings are urgently required for ongoing research focused on preparing antifouling biomedical materials. The identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported, which can resist mechanical washings on the surfaces of various polymer materials used in biomedical devices and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. These findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.</description><identifier>ISSN: 2366-7478</identifier><identifier>EISSN: 2366-7478</identifier><identifier>DOI: 10.1002/adbi.201700161</identifier><language>eng</language><subject>antifouling materials ; bacterial adhesion ; biofilms ; healthcare‐associated infections ; Pseudomonas aeruginosa</subject><ispartof>Advanced biosystems, 2017-12, Vol.1 (12), p.e1700161-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3221-93c1995d18e6df7d4659eeba54142a9cbea1b18080b6d308140f67c4b2441edf3</citedby><cites>FETCH-LOGICAL-c3221-93c1995d18e6df7d4659eeba54142a9cbea1b18080b6d308140f67c4b2441edf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadbi.201700161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadbi.201700161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Rongrong</creatorcontrib><creatorcontrib>Xia, Aiguo</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Li, Feixuan</creatorcontrib><creatorcontrib>Jin, Zhenyu</creatorcontrib><creatorcontrib>Yang, Shuai</creatorcontrib><creatorcontrib>Jin, Fan</creatorcontrib><title>Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials</title><title>Advanced biosystems</title><description>Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported. Unlike common persister cells that are highly tolerant to antibiotics, it is reported that the SSP cells can resist mechanical washings on the surfaces of various polymer materials and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. Most importantly, a general molecular mechanism is revealed by which an outer membrane protein crosslinks with polysaccharides to form gel‐like adhesion complexes that can exert extremely strong adhesion strength (up to 50 N mm−2). Therefore, these findings are urgently required for ongoing research focused on preparing antifouling biomedical materials. The identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported, which can resist mechanical washings on the surfaces of various polymer materials used in biomedical devices and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. These findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.</description><subject>antifouling materials</subject><subject>bacterial adhesion</subject><subject>biofilms</subject><subject>healthcare‐associated infections</subject><subject>Pseudomonas aeruginosa</subject><issn>2366-7478</issn><issn>2366-7478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EElVhZfbIkmI7juOMbaFQqRUV5WO0HOfSGKVJsVNV_e9xKQI2pnd3-r2n00PoipIBJYTd6CK3A0ZoSggV9AT1WCxElPJUnv6Zz9Gl9-8kMFLEMsl6qF52rm1WeFmBdnhStzu8AOet78DhkTZBrMZPcLjgOZhKN9boGr9pX9lm5XHb4K4CvNy6UhsIe4lftbPt1uNFW-_XIWauv1Jqf4HOyiBw-a199DK5ex4_RLPH--l4OItMzBiNstjQLEsKKkEUZVpwkWQAuU445UxnJgdNcyqJJLkoYiIpJ6VIDc8Z5xSKMu6j62PuxrUfW_CdWltvoK51A-ExxTiLiSBE8oAOjqhxrfcOSrVxdq3dXlGiDs2qQ7Pqp9lgyI6Gna1h_w-threj6a_3ExGhfT4</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Zhang, Rongrong</creator><creator>Xia, Aiguo</creator><creator>Ni, Lei</creator><creator>Li, Feixuan</creator><creator>Jin, Zhenyu</creator><creator>Yang, Shuai</creator><creator>Jin, Fan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials</title><author>Zhang, Rongrong ; Xia, Aiguo ; Ni, Lei ; Li, Feixuan ; Jin, Zhenyu ; Yang, Shuai ; Jin, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3221-93c1995d18e6df7d4659eeba54142a9cbea1b18080b6d308140f67c4b2441edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>antifouling materials</topic><topic>bacterial adhesion</topic><topic>biofilms</topic><topic>healthcare‐associated infections</topic><topic>Pseudomonas aeruginosa</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rongrong</creatorcontrib><creatorcontrib>Xia, Aiguo</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Li, Feixuan</creatorcontrib><creatorcontrib>Jin, Zhenyu</creatorcontrib><creatorcontrib>Yang, Shuai</creatorcontrib><creatorcontrib>Jin, Fan</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced biosystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Rongrong</au><au>Xia, Aiguo</au><au>Ni, Lei</au><au>Li, Feixuan</au><au>Jin, Zhenyu</au><au>Yang, Shuai</au><au>Jin, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials</atitle><jtitle>Advanced biosystems</jtitle><date>2017-12</date><risdate>2017</risdate><volume>1</volume><issue>12</issue><spage>e1700161</spage><epage>n/a</epage><pages>e1700161-n/a</pages><issn>2366-7478</issn><eissn>2366-7478</eissn><abstract>Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported. Unlike common persister cells that are highly tolerant to antibiotics, it is reported that the SSP cells can resist mechanical washings on the surfaces of various polymer materials and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. Most importantly, a general molecular mechanism is revealed by which an outer membrane protein crosslinks with polysaccharides to form gel‐like adhesion complexes that can exert extremely strong adhesion strength (up to 50 N mm−2). Therefore, these findings are urgently required for ongoing research focused on preparing antifouling biomedical materials. The identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported, which can resist mechanical washings on the surfaces of various polymer materials used in biomedical devices and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. These findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.</abstract><doi>10.1002/adbi.201700161</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2366-7478
ispartof Advanced biosystems, 2017-12, Vol.1 (12), p.e1700161-n/a
issn 2366-7478
2366-7478
language eng
recordid cdi_proquest_miscellaneous_2423060084
source Wiley Online Library All Journals
subjects antifouling materials
bacterial adhesion
biofilms
healthcare‐associated infections
Pseudomonas aeruginosa
title Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Shear%20Flow%20Persister%20Bacteria%20Resist%20Mechanical%20Washings%20on%20the%20Surfaces%20of%20Various%20Polymer%20Materials&rft.jtitle=Advanced%20biosystems&rft.au=Zhang,%20Rongrong&rft.date=2017-12&rft.volume=1&rft.issue=12&rft.spage=e1700161&rft.epage=n/a&rft.pages=e1700161-n/a&rft.issn=2366-7478&rft.eissn=2366-7478&rft_id=info:doi/10.1002/adbi.201700161&rft_dat=%3Cproquest_cross%3E2423060084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423060084&rft_id=info:pmid/&rfr_iscdi=true