Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials
Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shea...
Gespeichert in:
Veröffentlicht in: | Advanced biosystems 2017-12, Vol.1 (12), p.e1700161-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e1700161 |
container_title | Advanced biosystems |
container_volume | 1 |
creator | Zhang, Rongrong Xia, Aiguo Ni, Lei Li, Feixuan Jin, Zhenyu Yang, Shuai Jin, Fan |
description | Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported. Unlike common persister cells that are highly tolerant to antibiotics, it is reported that the SSP cells can resist mechanical washings on the surfaces of various polymer materials and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. Most importantly, a general molecular mechanism is revealed by which an outer membrane protein crosslinks with polysaccharides to form gel‐like adhesion complexes that can exert extremely strong adhesion strength (up to 50 N mm−2). Therefore, these findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.
The identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported, which can resist mechanical washings on the surfaces of various polymer materials used in biomedical devices and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. These findings are urgently required for ongoing research focused on preparing antifouling biomedical materials. |
doi_str_mv | 10.1002/adbi.201700161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423060084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423060084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3221-93c1995d18e6df7d4659eeba54142a9cbea1b18080b6d308140f67c4b2441edf3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EElVhZfbIkmI7juOMbaFQqRUV5WO0HOfSGKVJsVNV_e9xKQI2pnd3-r2n00PoipIBJYTd6CK3A0ZoSggV9AT1WCxElPJUnv6Zz9Gl9-8kMFLEMsl6qF52rm1WeFmBdnhStzu8AOet78DhkTZBrMZPcLjgOZhKN9boGr9pX9lm5XHb4K4CvNy6UhsIe4lftbPt1uNFW-_XIWauv1Jqf4HOyiBw-a199DK5ex4_RLPH--l4OItMzBiNstjQLEsKKkEUZVpwkWQAuU445UxnJgdNcyqJJLkoYiIpJ6VIDc8Z5xSKMu6j62PuxrUfW_CdWltvoK51A-ExxTiLiSBE8oAOjqhxrfcOSrVxdq3dXlGiDs2qQ7Pqp9lgyI6Gna1h_w-threj6a_3ExGhfT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423060084</pqid></control><display><type>article</type><title>Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials</title><source>Wiley Online Library All Journals</source><creator>Zhang, Rongrong ; Xia, Aiguo ; Ni, Lei ; Li, Feixuan ; Jin, Zhenyu ; Yang, Shuai ; Jin, Fan</creator><creatorcontrib>Zhang, Rongrong ; Xia, Aiguo ; Ni, Lei ; Li, Feixuan ; Jin, Zhenyu ; Yang, Shuai ; Jin, Fan</creatorcontrib><description>Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported. Unlike common persister cells that are highly tolerant to antibiotics, it is reported that the SSP cells can resist mechanical washings on the surfaces of various polymer materials and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. Most importantly, a general molecular mechanism is revealed by which an outer membrane protein crosslinks with polysaccharides to form gel‐like adhesion complexes that can exert extremely strong adhesion strength (up to 50 N mm−2). Therefore, these findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.
The identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported, which can resist mechanical washings on the surfaces of various polymer materials used in biomedical devices and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. These findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.</description><identifier>ISSN: 2366-7478</identifier><identifier>EISSN: 2366-7478</identifier><identifier>DOI: 10.1002/adbi.201700161</identifier><language>eng</language><subject>antifouling materials ; bacterial adhesion ; biofilms ; healthcare‐associated infections ; Pseudomonas aeruginosa</subject><ispartof>Advanced biosystems, 2017-12, Vol.1 (12), p.e1700161-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3221-93c1995d18e6df7d4659eeba54142a9cbea1b18080b6d308140f67c4b2441edf3</citedby><cites>FETCH-LOGICAL-c3221-93c1995d18e6df7d4659eeba54142a9cbea1b18080b6d308140f67c4b2441edf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadbi.201700161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadbi.201700161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Rongrong</creatorcontrib><creatorcontrib>Xia, Aiguo</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Li, Feixuan</creatorcontrib><creatorcontrib>Jin, Zhenyu</creatorcontrib><creatorcontrib>Yang, Shuai</creatorcontrib><creatorcontrib>Jin, Fan</creatorcontrib><title>Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials</title><title>Advanced biosystems</title><description>Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported. Unlike common persister cells that are highly tolerant to antibiotics, it is reported that the SSP cells can resist mechanical washings on the surfaces of various polymer materials and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. Most importantly, a general molecular mechanism is revealed by which an outer membrane protein crosslinks with polysaccharides to form gel‐like adhesion complexes that can exert extremely strong adhesion strength (up to 50 N mm−2). Therefore, these findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.
The identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported, which can resist mechanical washings on the surfaces of various polymer materials used in biomedical devices and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. These findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.</description><subject>antifouling materials</subject><subject>bacterial adhesion</subject><subject>biofilms</subject><subject>healthcare‐associated infections</subject><subject>Pseudomonas aeruginosa</subject><issn>2366-7478</issn><issn>2366-7478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EElVhZfbIkmI7juOMbaFQqRUV5WO0HOfSGKVJsVNV_e9xKQI2pnd3-r2n00PoipIBJYTd6CK3A0ZoSggV9AT1WCxElPJUnv6Zz9Gl9-8kMFLEMsl6qF52rm1WeFmBdnhStzu8AOet78DhkTZBrMZPcLjgOZhKN9boGr9pX9lm5XHb4K4CvNy6UhsIe4lftbPt1uNFW-_XIWauv1Jqf4HOyiBw-a199DK5ex4_RLPH--l4OItMzBiNstjQLEsKKkEUZVpwkWQAuU445UxnJgdNcyqJJLkoYiIpJ6VIDc8Z5xSKMu6j62PuxrUfW_CdWltvoK51A-ExxTiLiSBE8oAOjqhxrfcOSrVxdq3dXlGiDs2qQ7Pqp9lgyI6Gna1h_w-threj6a_3ExGhfT4</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Zhang, Rongrong</creator><creator>Xia, Aiguo</creator><creator>Ni, Lei</creator><creator>Li, Feixuan</creator><creator>Jin, Zhenyu</creator><creator>Yang, Shuai</creator><creator>Jin, Fan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials</title><author>Zhang, Rongrong ; Xia, Aiguo ; Ni, Lei ; Li, Feixuan ; Jin, Zhenyu ; Yang, Shuai ; Jin, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3221-93c1995d18e6df7d4659eeba54142a9cbea1b18080b6d308140f67c4b2441edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>antifouling materials</topic><topic>bacterial adhesion</topic><topic>biofilms</topic><topic>healthcare‐associated infections</topic><topic>Pseudomonas aeruginosa</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rongrong</creatorcontrib><creatorcontrib>Xia, Aiguo</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Li, Feixuan</creatorcontrib><creatorcontrib>Jin, Zhenyu</creatorcontrib><creatorcontrib>Yang, Shuai</creatorcontrib><creatorcontrib>Jin, Fan</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced biosystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Rongrong</au><au>Xia, Aiguo</au><au>Ni, Lei</au><au>Li, Feixuan</au><au>Jin, Zhenyu</au><au>Yang, Shuai</au><au>Jin, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials</atitle><jtitle>Advanced biosystems</jtitle><date>2017-12</date><risdate>2017</risdate><volume>1</volume><issue>12</issue><spage>e1700161</spage><epage>n/a</epage><pages>e1700161-n/a</pages><issn>2366-7478</issn><eissn>2366-7478</eissn><abstract>Environmental bacteria persistently exist in hospitals and thereby often contaminate biomedical devices, which usually causes device‐associated infections that have become a major cause of patient illness and death in the hospital. In this study, for the first time, the identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported. Unlike common persister cells that are highly tolerant to antibiotics, it is reported that the SSP cells can resist mechanical washings on the surfaces of various polymer materials and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. Most importantly, a general molecular mechanism is revealed by which an outer membrane protein crosslinks with polysaccharides to form gel‐like adhesion complexes that can exert extremely strong adhesion strength (up to 50 N mm−2). Therefore, these findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.
The identification of strong shear flow persister (SSP) cells in Pseudomonas aeruginosa is reported, which can resist mechanical washings on the surfaces of various polymer materials used in biomedical devices and can form distinctive biofilms that are tolerant to high doses of aminoglycoside antibiotics. These findings are urgently required for ongoing research focused on preparing antifouling biomedical materials.</abstract><doi>10.1002/adbi.201700161</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2366-7478 |
ispartof | Advanced biosystems, 2017-12, Vol.1 (12), p.e1700161-n/a |
issn | 2366-7478 2366-7478 |
language | eng |
recordid | cdi_proquest_miscellaneous_2423060084 |
source | Wiley Online Library All Journals |
subjects | antifouling materials bacterial adhesion biofilms healthcare‐associated infections Pseudomonas aeruginosa |
title | Strong Shear Flow Persister Bacteria Resist Mechanical Washings on the Surfaces of Various Polymer Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Shear%20Flow%20Persister%20Bacteria%20Resist%20Mechanical%20Washings%20on%20the%20Surfaces%20of%20Various%20Polymer%20Materials&rft.jtitle=Advanced%20biosystems&rft.au=Zhang,%20Rongrong&rft.date=2017-12&rft.volume=1&rft.issue=12&rft.spage=e1700161&rft.epage=n/a&rft.pages=e1700161-n/a&rft.issn=2366-7478&rft.eissn=2366-7478&rft_id=info:doi/10.1002/adbi.201700161&rft_dat=%3Cproquest_cross%3E2423060084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423060084&rft_id=info:pmid/&rfr_iscdi=true |