A perturbation solution to the full Poisson-Nernst-Planck equations yields an asymmetric rectified electric field

We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences. Treating the applied potential as the perturbation parameter, we show that the second-order solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2020-08, Vol.16 (3), p.752-762
Hauptverfasser: Hashemi, Aref, Miller, Gregory H, Bishop, Kyle J. M, Ristenpart, William D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 3
container_start_page 752
container_title Soft matter
container_volume 16
creator Hashemi, Aref
Miller, Gregory H
Bishop, Kyle J. M
Ristenpart, William D
description We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences. Treating the applied potential as the perturbation parameter, we show that the second-order solution yields a nonzero time-average electric field at large distances from the electrodes, corroborating the recent discovery of Asymmetric Rectified Electric Fields (AREFs) via numerical solution to the full nonlinear PNP equations [Hashemi et al. , Phys. Rev. Lett. , 2018, 121 , 185504]. Importantly, the first-order solution is analytic, while the second-order AREF is semi-analytic and obtained by numerically solving a single linear ordinary differential equation, obviating the need for full numerical solutions to the PNP equations. We demonstrate that at sufficiently high frequencies and electrode spacings the semi-analytical AREF accurately captures both the complicated shape and the magnitude of the AREF, even at large applied potentials. We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences.
doi_str_mv 10.1039/d0sm00417k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423057853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430350118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-f30d40467580a31738aa6eaebbb5f2dbda81c00e4bacb2c065349796652310283</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRsFYv3oUFLyJEZ7Objx6L31i1oIK3sNlMMG2SbXc2h_73pq1U8DSP4TePxxvGTgVcCZCj6wKoAVAime-xgUiUCuJUpfs7Lb8O2RHRDECmSsQDthzzBTrfuVz7yracbN1thLfcfyMvu7rmU1sR2TZ4RdeSD6a1bs2c47Lb3BBfVVgXxHXLNa2aBr2rDHdofFVWWHCse7lelWvumB2UuiY8-Z1D9nl_93HzGEzeHp5uxpPAyEj4oJRQKFBxEqWgpUhkqnWMGvM8j8qwyAudCgOAKtcmDw3EkVSjZBTHUSgFhKkcsout78LZZYfks6Yig3UfHm1HWahCCVGSRrJHz_-hM9u5tk_XUxJkBEKsDS-3lHGWyGGZLVzVaLfKBGTr9rNbeH_ZtP_cw2db2JHZcX_fkT-QuIJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430350118</pqid></control><display><type>article</type><title>A perturbation solution to the full Poisson-Nernst-Planck equations yields an asymmetric rectified electric field</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hashemi, Aref ; Miller, Gregory H ; Bishop, Kyle J. M ; Ristenpart, William D</creator><creatorcontrib>Hashemi, Aref ; Miller, Gregory H ; Bishop, Kyle J. M ; Ristenpart, William D</creatorcontrib><description>We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences. Treating the applied potential as the perturbation parameter, we show that the second-order solution yields a nonzero time-average electric field at large distances from the electrodes, corroborating the recent discovery of Asymmetric Rectified Electric Fields (AREFs) via numerical solution to the full nonlinear PNP equations [Hashemi et al. , Phys. Rev. Lett. , 2018, 121 , 185504]. Importantly, the first-order solution is analytic, while the second-order AREF is semi-analytic and obtained by numerically solving a single linear ordinary differential equation, obviating the need for full numerical solutions to the PNP equations. We demonstrate that at sufficiently high frequencies and electrode spacings the semi-analytical AREF accurately captures both the complicated shape and the magnitude of the AREF, even at large applied potentials. We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm00417k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Asymmetry ; Differential equations ; Electric fields ; Electrode polarization ; Electrodes ; Nonlinear equations ; Ordinary differential equations ; Perturbation ; Spatial distribution</subject><ispartof>Soft matter, 2020-08, Vol.16 (3), p.752-762</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-f30d40467580a31738aa6eaebbb5f2dbda81c00e4bacb2c065349796652310283</citedby><cites>FETCH-LOGICAL-c351t-f30d40467580a31738aa6eaebbb5f2dbda81c00e4bacb2c065349796652310283</cites><orcidid>0000-0002-4935-6310 ; 0000-0002-7467-3668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hashemi, Aref</creatorcontrib><creatorcontrib>Miller, Gregory H</creatorcontrib><creatorcontrib>Bishop, Kyle J. M</creatorcontrib><creatorcontrib>Ristenpart, William D</creatorcontrib><title>A perturbation solution to the full Poisson-Nernst-Planck equations yields an asymmetric rectified electric field</title><title>Soft matter</title><description>We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences. Treating the applied potential as the perturbation parameter, we show that the second-order solution yields a nonzero time-average electric field at large distances from the electrodes, corroborating the recent discovery of Asymmetric Rectified Electric Fields (AREFs) via numerical solution to the full nonlinear PNP equations [Hashemi et al. , Phys. Rev. Lett. , 2018, 121 , 185504]. Importantly, the first-order solution is analytic, while the second-order AREF is semi-analytic and obtained by numerically solving a single linear ordinary differential equation, obviating the need for full numerical solutions to the PNP equations. We demonstrate that at sufficiently high frequencies and electrode spacings the semi-analytical AREF accurately captures both the complicated shape and the magnitude of the AREF, even at large applied potentials. We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences.</description><subject>Asymmetry</subject><subject>Differential equations</subject><subject>Electric fields</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Perturbation</subject><subject>Spatial distribution</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1Lw0AQxRdRsFYv3oUFLyJEZ7Objx6L31i1oIK3sNlMMG2SbXc2h_73pq1U8DSP4TePxxvGTgVcCZCj6wKoAVAime-xgUiUCuJUpfs7Lb8O2RHRDECmSsQDthzzBTrfuVz7yracbN1thLfcfyMvu7rmU1sR2TZ4RdeSD6a1bs2c47Lb3BBfVVgXxHXLNa2aBr2rDHdofFVWWHCse7lelWvumB2UuiY8-Z1D9nl_93HzGEzeHp5uxpPAyEj4oJRQKFBxEqWgpUhkqnWMGvM8j8qwyAudCgOAKtcmDw3EkVSjZBTHUSgFhKkcsout78LZZYfks6Yig3UfHm1HWahCCVGSRrJHz_-hM9u5tk_XUxJkBEKsDS-3lHGWyGGZLVzVaLfKBGTr9rNbeH_ZtP_cw2db2JHZcX_fkT-QuIJ4</recordid><startdate>20200814</startdate><enddate>20200814</enddate><creator>Hashemi, Aref</creator><creator>Miller, Gregory H</creator><creator>Bishop, Kyle J. M</creator><creator>Ristenpart, William D</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4935-6310</orcidid><orcidid>https://orcid.org/0000-0002-7467-3668</orcidid></search><sort><creationdate>20200814</creationdate><title>A perturbation solution to the full Poisson-Nernst-Planck equations yields an asymmetric rectified electric field</title><author>Hashemi, Aref ; Miller, Gregory H ; Bishop, Kyle J. M ; Ristenpart, William D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-f30d40467580a31738aa6eaebbb5f2dbda81c00e4bacb2c065349796652310283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymmetry</topic><topic>Differential equations</topic><topic>Electric fields</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Perturbation</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashemi, Aref</creatorcontrib><creatorcontrib>Miller, Gregory H</creatorcontrib><creatorcontrib>Bishop, Kyle J. M</creatorcontrib><creatorcontrib>Ristenpart, William D</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashemi, Aref</au><au>Miller, Gregory H</au><au>Bishop, Kyle J. M</au><au>Ristenpart, William D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A perturbation solution to the full Poisson-Nernst-Planck equations yields an asymmetric rectified electric field</atitle><jtitle>Soft matter</jtitle><date>2020-08-14</date><risdate>2020</risdate><volume>16</volume><issue>3</issue><spage>752</spage><epage>762</epage><pages>752-762</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences. Treating the applied potential as the perturbation parameter, we show that the second-order solution yields a nonzero time-average electric field at large distances from the electrodes, corroborating the recent discovery of Asymmetric Rectified Electric Fields (AREFs) via numerical solution to the full nonlinear PNP equations [Hashemi et al. , Phys. Rev. Lett. , 2018, 121 , 185504]. Importantly, the first-order solution is analytic, while the second-order AREF is semi-analytic and obtained by numerically solving a single linear ordinary differential equation, obviating the need for full numerical solutions to the PNP equations. We demonstrate that at sufficiently high frequencies and electrode spacings the semi-analytical AREF accurately captures both the complicated shape and the magnitude of the AREF, even at large applied potentials. We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0sm00417k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4935-6310</orcidid><orcidid>https://orcid.org/0000-0002-7467-3668</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2020-08, Vol.16 (3), p.752-762
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2423057853
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Asymmetry
Differential equations
Electric fields
Electrode polarization
Electrodes
Nonlinear equations
Ordinary differential equations
Perturbation
Spatial distribution
title A perturbation solution to the full Poisson-Nernst-Planck equations yields an asymmetric rectified electric field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20perturbation%20solution%20to%20the%20full%20Poisson-Nernst-Planck%20equations%20yields%20an%20asymmetric%20rectified%20electric%20field&rft.jtitle=Soft%20matter&rft.au=Hashemi,%20Aref&rft.date=2020-08-14&rft.volume=16&rft.issue=3&rft.spage=752&rft.epage=762&rft.pages=752-762&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm00417k&rft_dat=%3Cproquest_cross%3E2430350118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430350118&rft_id=info:pmid/&rfr_iscdi=true