Sodium regulates clock time and output via an excitatory GABAergic pathway
The suprachiasmatic nucleus (SCN) serves as the body’s master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day–night cycle 1 – 4 . For example, the SCN opposes overnight adipsia by driving water intake be...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-07, Vol.583 (7816), p.421-424 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | 7816 |
container_start_page | 421 |
container_title | Nature (London) |
container_volume | 583 |
creator | Gizowski, Claire Bourque, Charles W. |
description | The suprachiasmatic nucleus (SCN) serves as the body’s master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day–night cycle
1
–
4
. For example, the SCN opposes overnight adipsia by driving water intake before sleep
5
,
6
, and by driving the secretion of anti-diuretic hormone
7
,
8
and lowering body temperature
9
,
10
to reduce water loss during sleep
11
. These responses can also be driven by central osmo-sodium sensors to oppose an unscheduled rise in osmolality during the active phase
12
–
16
. However, it is unknown whether osmo-sodium sensors require clock-output networks to drive homeostatic responses. Here we show that a systemic salt injection (hypertonic saline) given at Zeitgeber time 19—a time at which SCN
VP
(vasopressin) neurons are inactive—excited SCN
VP
neurons and decreased non-shivering thermogenesis (NST) and body temperature. The effects of hypertonic saline on NST and body temperature were prevented by chemogenetic inhibition of SCN
VP
neurons and mimicked by optogenetic stimulation of SCN
VP
neurons in vivo. Combined anatomical and electrophysiological experiments revealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT) neurons expressing glutamic acid decarboxylase (OVLT
GAD
) relay this information to SCN
VP
neurons via an excitatory effect of γ-aminobutyric acid (GABA). Optogenetic activation of OVLT
GAD
neuron axon terminals excited SCN
VP
neurons in vitro and mimicked the effects of hypertonic saline on NST and body temperature in vivo. Furthermore, chemogenetic inhibition of OVLT
GAD
neurons blunted the effects of systemic hypertonic saline on NST and body temperature. Finally, we show that hypertonic saline significantly phase-advanced the circadian locomotor activity onset of mice. This effect was mimicked by optogenetic activation of the OVLT
GAD
→ SCN
VP
pathway and was prevented by chemogenetic inhibition of OVLT
GAD
neurons. Collectively, our findings provide demonstration that clock time can be regulated by non-photic physiologically relevant cues, and that such cues can drive unscheduled homeostatic responses via clock-output networks.
The authors demonstrate that clock time can be regulated by non-photic physiologically relevant cues and that such cues can drive unscheduled homeostatic responses via clock-output networks. |
doi_str_mv | 10.1038/s41586-020-2471-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2422013971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629635696</galeid><sourcerecordid>A629635696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-d10c62ea64117f4f080aba95adf5c7da20331e0182d65f152f3fe0ac33d664d13</originalsourceid><addsrcrecordid>eNp1kctu1DAYhS0EosPAA7BBFmxgEfA9meW0glJUCYnC2nJ9CS5JnPoCM2-PoymUItjYsvz9R-fXB8BTjF5jRLs3iWHeiQYR1BDW4mZ3D6wwa0XDRNfeByuESNegjooj8CilK4QQxy17CI4oEQx3hK_Ah4tgfBlhtH0ZVLYJ6iHobzD70UI1GRhKnkuG372qT2h32meVQ9zD0-3x1sbeazir_PWH2j8GD5wakn1yc6_Bl3dvP5-8b84_np6dbM8bzQXLjcFIC2JVbYBbxxzqkLpUG66M47o1iiBKsUW1nhHcYU4cdRYpTakRghlM1-DlIXeO4brYlOXok7bDoCYbSpKEEYIw3bQL-uIv9CqUONV2CyXYhhJKb6leDVb6yYUclV5C5VaQjaBc1GMNnv-D0rO_ln9Cr-5AOkzZ7nKvSkry7OLT3UB8YHUMKUXr5Bz9qOJeYiQXv_LgV1a_cvErd3Xm2c1C5XK05vfEL6EVIAcg1a-pt_F24_-n_gQ3AKxj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426493233</pqid></control><display><type>article</type><title>Sodium regulates clock time and output via an excitatory GABAergic pathway</title><source>MEDLINE</source><source>SpringerLink_现刊</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Gizowski, Claire ; Bourque, Charles W.</creator><creatorcontrib>Gizowski, Claire ; Bourque, Charles W.</creatorcontrib><description>The suprachiasmatic nucleus (SCN) serves as the body’s master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day–night cycle
1
–
4
. For example, the SCN opposes overnight adipsia by driving water intake before sleep
5
,
6
, and by driving the secretion of anti-diuretic hormone
7
,
8
and lowering body temperature
9
,
10
to reduce water loss during sleep
11
. These responses can also be driven by central osmo-sodium sensors to oppose an unscheduled rise in osmolality during the active phase
12
–
16
. However, it is unknown whether osmo-sodium sensors require clock-output networks to drive homeostatic responses. Here we show that a systemic salt injection (hypertonic saline) given at Zeitgeber time 19—a time at which SCN
VP
(vasopressin) neurons are inactive—excited SCN
VP
neurons and decreased non-shivering thermogenesis (NST) and body temperature. The effects of hypertonic saline on NST and body temperature were prevented by chemogenetic inhibition of SCN
VP
neurons and mimicked by optogenetic stimulation of SCN
VP
neurons in vivo. Combined anatomical and electrophysiological experiments revealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT) neurons expressing glutamic acid decarboxylase (OVLT
GAD
) relay this information to SCN
VP
neurons via an excitatory effect of γ-aminobutyric acid (GABA). Optogenetic activation of OVLT
GAD
neuron axon terminals excited SCN
VP
neurons in vitro and mimicked the effects of hypertonic saline on NST and body temperature in vivo. Furthermore, chemogenetic inhibition of OVLT
GAD
neurons blunted the effects of systemic hypertonic saline on NST and body temperature. Finally, we show that hypertonic saline significantly phase-advanced the circadian locomotor activity onset of mice. This effect was mimicked by optogenetic activation of the OVLT
GAD
→ SCN
VP
pathway and was prevented by chemogenetic inhibition of OVLT
GAD
neurons. Collectively, our findings provide demonstration that clock time can be regulated by non-photic physiologically relevant cues, and that such cues can drive unscheduled homeostatic responses via clock-output networks.
The authors demonstrate that clock time can be regulated by non-photic physiologically relevant cues and that such cues can drive unscheduled homeostatic responses via clock-output networks.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2471-x</identifier><identifier>PMID: 32641825</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/51 ; 14/19 ; 14/35 ; 631/378/1385/1330 ; 631/378/3917 ; 631/378/3920 ; 64/60 ; 9/74 ; Activation ; Animals ; Antidiuretics ; Biological clocks ; Body temperature ; Body Temperature - drug effects ; Body Temperature - physiology ; Circadian Clocks - drug effects ; Circadian Clocks - physiology ; Circadian rhythm ; Circadian Rhythm - drug effects ; Circadian Rhythm - physiology ; Circadian rhythms ; Diuretics ; Drinking - drug effects ; Experiments ; GABA ; gamma-Aminobutyric Acid - metabolism ; Glutamate decarboxylase ; Glutamate Decarboxylase - metabolism ; Glutamic acid ; Humanities and Social Sciences ; Locomotion - drug effects ; Locomotion - physiology ; Locomotor activity ; Male ; Mice ; multidisciplinary ; Neural Pathways - drug effects ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Non-shivering ; Optogenetics ; Organum Vasculosum - cytology ; Organum Vasculosum - drug effects ; Organum Vasculosum - enzymology ; Organum Vasculosum - physiology ; Osmolar Concentration ; Physiological aspects ; Presynapse ; Saline Solution, Hypertonic - administration & dosage ; Saline Solution, Hypertonic - metabolism ; Saline Solution, Hypertonic - pharmacology ; Science ; Science (multidisciplinary) ; Sensors ; Shivering ; Sodium ; Sodium - administration & dosage ; Sodium - metabolism ; Sodium - pharmacology ; Suprachiasmatic nucleus ; Suprachiasmatic Nucleus - cytology ; Suprachiasmatic Nucleus - drug effects ; Suprachiasmatic Nucleus - physiology ; Temperature effects ; Thermogenesis ; Vasopressin ; Vasopressins - metabolism ; Water intake ; Water intakes ; Water loss ; Zeitgeber ; γ-Aminobutyric acid</subject><ispartof>Nature (London), 2020-07, Vol.583 (7816), p.421-424</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 16, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-d10c62ea64117f4f080aba95adf5c7da20331e0182d65f152f3fe0ac33d664d13</citedby><cites>FETCH-LOGICAL-c564t-d10c62ea64117f4f080aba95adf5c7da20331e0182d65f152f3fe0ac33d664d13</cites><orcidid>0000-0002-1594-742X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2471-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2471-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32641825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gizowski, Claire</creatorcontrib><creatorcontrib>Bourque, Charles W.</creatorcontrib><title>Sodium regulates clock time and output via an excitatory GABAergic pathway</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The suprachiasmatic nucleus (SCN) serves as the body’s master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day–night cycle
1
–
4
. For example, the SCN opposes overnight adipsia by driving water intake before sleep
5
,
6
, and by driving the secretion of anti-diuretic hormone
7
,
8
and lowering body temperature
9
,
10
to reduce water loss during sleep
11
. These responses can also be driven by central osmo-sodium sensors to oppose an unscheduled rise in osmolality during the active phase
12
–
16
. However, it is unknown whether osmo-sodium sensors require clock-output networks to drive homeostatic responses. Here we show that a systemic salt injection (hypertonic saline) given at Zeitgeber time 19—a time at which SCN
VP
(vasopressin) neurons are inactive—excited SCN
VP
neurons and decreased non-shivering thermogenesis (NST) and body temperature. The effects of hypertonic saline on NST and body temperature were prevented by chemogenetic inhibition of SCN
VP
neurons and mimicked by optogenetic stimulation of SCN
VP
neurons in vivo. Combined anatomical and electrophysiological experiments revealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT) neurons expressing glutamic acid decarboxylase (OVLT
GAD
) relay this information to SCN
VP
neurons via an excitatory effect of γ-aminobutyric acid (GABA). Optogenetic activation of OVLT
GAD
neuron axon terminals excited SCN
VP
neurons in vitro and mimicked the effects of hypertonic saline on NST and body temperature in vivo. Furthermore, chemogenetic inhibition of OVLT
GAD
neurons blunted the effects of systemic hypertonic saline on NST and body temperature. Finally, we show that hypertonic saline significantly phase-advanced the circadian locomotor activity onset of mice. This effect was mimicked by optogenetic activation of the OVLT
GAD
→ SCN
VP
pathway and was prevented by chemogenetic inhibition of OVLT
GAD
neurons. Collectively, our findings provide demonstration that clock time can be regulated by non-photic physiologically relevant cues, and that such cues can drive unscheduled homeostatic responses via clock-output networks.
The authors demonstrate that clock time can be regulated by non-photic physiologically relevant cues and that such cues can drive unscheduled homeostatic responses via clock-output networks.</description><subject>13/1</subject><subject>13/51</subject><subject>14/19</subject><subject>14/35</subject><subject>631/378/1385/1330</subject><subject>631/378/3917</subject><subject>631/378/3920</subject><subject>64/60</subject><subject>9/74</subject><subject>Activation</subject><subject>Animals</subject><subject>Antidiuretics</subject><subject>Biological clocks</subject><subject>Body temperature</subject><subject>Body Temperature - drug effects</subject><subject>Body Temperature - physiology</subject><subject>Circadian Clocks - drug effects</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - drug effects</subject><subject>Circadian Rhythm - physiology</subject><subject>Circadian rhythms</subject><subject>Diuretics</subject><subject>Drinking - drug effects</subject><subject>Experiments</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamate decarboxylase</subject><subject>Glutamate Decarboxylase - metabolism</subject><subject>Glutamic acid</subject><subject>Humanities and Social Sciences</subject><subject>Locomotion - drug effects</subject><subject>Locomotion - physiology</subject><subject>Locomotor activity</subject><subject>Male</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Neural Pathways - drug effects</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Non-shivering</subject><subject>Optogenetics</subject><subject>Organum Vasculosum - cytology</subject><subject>Organum Vasculosum - drug effects</subject><subject>Organum Vasculosum - enzymology</subject><subject>Organum Vasculosum - physiology</subject><subject>Osmolar Concentration</subject><subject>Physiological aspects</subject><subject>Presynapse</subject><subject>Saline Solution, Hypertonic - administration & dosage</subject><subject>Saline Solution, Hypertonic - metabolism</subject><subject>Saline Solution, Hypertonic - pharmacology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Shivering</subject><subject>Sodium</subject><subject>Sodium - administration & dosage</subject><subject>Sodium - metabolism</subject><subject>Sodium - pharmacology</subject><subject>Suprachiasmatic nucleus</subject><subject>Suprachiasmatic Nucleus - cytology</subject><subject>Suprachiasmatic Nucleus - drug effects</subject><subject>Suprachiasmatic Nucleus - physiology</subject><subject>Temperature effects</subject><subject>Thermogenesis</subject><subject>Vasopressin</subject><subject>Vasopressins - metabolism</subject><subject>Water intake</subject><subject>Water intakes</subject><subject>Water loss</subject><subject>Zeitgeber</subject><subject>γ-Aminobutyric acid</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kctu1DAYhS0EosPAA7BBFmxgEfA9meW0glJUCYnC2nJ9CS5JnPoCM2-PoymUItjYsvz9R-fXB8BTjF5jRLs3iWHeiQYR1BDW4mZ3D6wwa0XDRNfeByuESNegjooj8CilK4QQxy17CI4oEQx3hK_Ah4tgfBlhtH0ZVLYJ6iHobzD70UI1GRhKnkuG372qT2h32meVQ9zD0-3x1sbeazir_PWH2j8GD5wakn1yc6_Bl3dvP5-8b84_np6dbM8bzQXLjcFIC2JVbYBbxxzqkLpUG66M47o1iiBKsUW1nhHcYU4cdRYpTakRghlM1-DlIXeO4brYlOXok7bDoCYbSpKEEYIw3bQL-uIv9CqUONV2CyXYhhJKb6leDVb6yYUclV5C5VaQjaBc1GMNnv-D0rO_ln9Cr-5AOkzZ7nKvSkry7OLT3UB8YHUMKUXr5Bz9qOJeYiQXv_LgV1a_cvErd3Xm2c1C5XK05vfEL6EVIAcg1a-pt_F24_-n_gQ3AKxj</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Gizowski, Claire</creator><creator>Bourque, Charles W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1594-742X</orcidid></search><sort><creationdate>20200716</creationdate><title>Sodium regulates clock time and output via an excitatory GABAergic pathway</title><author>Gizowski, Claire ; Bourque, Charles W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-d10c62ea64117f4f080aba95adf5c7da20331e0182d65f152f3fe0ac33d664d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/51</topic><topic>14/19</topic><topic>14/35</topic><topic>631/378/1385/1330</topic><topic>631/378/3917</topic><topic>631/378/3920</topic><topic>64/60</topic><topic>9/74</topic><topic>Activation</topic><topic>Animals</topic><topic>Antidiuretics</topic><topic>Biological clocks</topic><topic>Body temperature</topic><topic>Body Temperature - drug effects</topic><topic>Body Temperature - physiology</topic><topic>Circadian Clocks - drug effects</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - drug effects</topic><topic>Circadian Rhythm - physiology</topic><topic>Circadian rhythms</topic><topic>Diuretics</topic><topic>Drinking - drug effects</topic><topic>Experiments</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamate decarboxylase</topic><topic>Glutamate Decarboxylase - metabolism</topic><topic>Glutamic acid</topic><topic>Humanities and Social Sciences</topic><topic>Locomotion - drug effects</topic><topic>Locomotion - physiology</topic><topic>Locomotor activity</topic><topic>Male</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Neural Pathways - drug effects</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Non-shivering</topic><topic>Optogenetics</topic><topic>Organum Vasculosum - cytology</topic><topic>Organum Vasculosum - drug effects</topic><topic>Organum Vasculosum - enzymology</topic><topic>Organum Vasculosum - physiology</topic><topic>Osmolar Concentration</topic><topic>Physiological aspects</topic><topic>Presynapse</topic><topic>Saline Solution, Hypertonic - administration & dosage</topic><topic>Saline Solution, Hypertonic - metabolism</topic><topic>Saline Solution, Hypertonic - pharmacology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Shivering</topic><topic>Sodium</topic><topic>Sodium - administration & dosage</topic><topic>Sodium - metabolism</topic><topic>Sodium - pharmacology</topic><topic>Suprachiasmatic nucleus</topic><topic>Suprachiasmatic Nucleus - cytology</topic><topic>Suprachiasmatic Nucleus - drug effects</topic><topic>Suprachiasmatic Nucleus - physiology</topic><topic>Temperature effects</topic><topic>Thermogenesis</topic><topic>Vasopressin</topic><topic>Vasopressins - metabolism</topic><topic>Water intake</topic><topic>Water intakes</topic><topic>Water loss</topic><topic>Zeitgeber</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gizowski, Claire</creatorcontrib><creatorcontrib>Bourque, Charles W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest_Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gizowski, Claire</au><au>Bourque, Charles W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium regulates clock time and output via an excitatory GABAergic pathway</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-07-16</date><risdate>2020</risdate><volume>583</volume><issue>7816</issue><spage>421</spage><epage>424</epage><pages>421-424</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The suprachiasmatic nucleus (SCN) serves as the body’s master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day–night cycle
1
–
4
. For example, the SCN opposes overnight adipsia by driving water intake before sleep
5
,
6
, and by driving the secretion of anti-diuretic hormone
7
,
8
and lowering body temperature
9
,
10
to reduce water loss during sleep
11
. These responses can also be driven by central osmo-sodium sensors to oppose an unscheduled rise in osmolality during the active phase
12
–
16
. However, it is unknown whether osmo-sodium sensors require clock-output networks to drive homeostatic responses. Here we show that a systemic salt injection (hypertonic saline) given at Zeitgeber time 19—a time at which SCN
VP
(vasopressin) neurons are inactive—excited SCN
VP
neurons and decreased non-shivering thermogenesis (NST) and body temperature. The effects of hypertonic saline on NST and body temperature were prevented by chemogenetic inhibition of SCN
VP
neurons and mimicked by optogenetic stimulation of SCN
VP
neurons in vivo. Combined anatomical and electrophysiological experiments revealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT) neurons expressing glutamic acid decarboxylase (OVLT
GAD
) relay this information to SCN
VP
neurons via an excitatory effect of γ-aminobutyric acid (GABA). Optogenetic activation of OVLT
GAD
neuron axon terminals excited SCN
VP
neurons in vitro and mimicked the effects of hypertonic saline on NST and body temperature in vivo. Furthermore, chemogenetic inhibition of OVLT
GAD
neurons blunted the effects of systemic hypertonic saline on NST and body temperature. Finally, we show that hypertonic saline significantly phase-advanced the circadian locomotor activity onset of mice. This effect was mimicked by optogenetic activation of the OVLT
GAD
→ SCN
VP
pathway and was prevented by chemogenetic inhibition of OVLT
GAD
neurons. Collectively, our findings provide demonstration that clock time can be regulated by non-photic physiologically relevant cues, and that such cues can drive unscheduled homeostatic responses via clock-output networks.
The authors demonstrate that clock time can be regulated by non-photic physiologically relevant cues and that such cues can drive unscheduled homeostatic responses via clock-output networks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32641825</pmid><doi>10.1038/s41586-020-2471-x</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1594-742X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-07, Vol.583 (7816), p.421-424 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2422013971 |
source | MEDLINE; SpringerLink_现刊; Springer Nature - Connect here FIRST to enable access |
subjects | 13/1 13/51 14/19 14/35 631/378/1385/1330 631/378/3917 631/378/3920 64/60 9/74 Activation Animals Antidiuretics Biological clocks Body temperature Body Temperature - drug effects Body Temperature - physiology Circadian Clocks - drug effects Circadian Clocks - physiology Circadian rhythm Circadian Rhythm - drug effects Circadian Rhythm - physiology Circadian rhythms Diuretics Drinking - drug effects Experiments GABA gamma-Aminobutyric Acid - metabolism Glutamate decarboxylase Glutamate Decarboxylase - metabolism Glutamic acid Humanities and Social Sciences Locomotion - drug effects Locomotion - physiology Locomotor activity Male Mice multidisciplinary Neural Pathways - drug effects Neurons Neurons - drug effects Neurons - metabolism Non-shivering Optogenetics Organum Vasculosum - cytology Organum Vasculosum - drug effects Organum Vasculosum - enzymology Organum Vasculosum - physiology Osmolar Concentration Physiological aspects Presynapse Saline Solution, Hypertonic - administration & dosage Saline Solution, Hypertonic - metabolism Saline Solution, Hypertonic - pharmacology Science Science (multidisciplinary) Sensors Shivering Sodium Sodium - administration & dosage Sodium - metabolism Sodium - pharmacology Suprachiasmatic nucleus Suprachiasmatic Nucleus - cytology Suprachiasmatic Nucleus - drug effects Suprachiasmatic Nucleus - physiology Temperature effects Thermogenesis Vasopressin Vasopressins - metabolism Water intake Water intakes Water loss Zeitgeber γ-Aminobutyric acid |
title | Sodium regulates clock time and output via an excitatory GABAergic pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20regulates%20clock%20time%20and%20output%20via%20an%20excitatory%20GABAergic%20pathway&rft.jtitle=Nature%20(London)&rft.au=Gizowski,%20Claire&rft.date=2020-07-16&rft.volume=583&rft.issue=7816&rft.spage=421&rft.epage=424&rft.pages=421-424&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2471-x&rft_dat=%3Cgale_proqu%3EA629635696%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426493233&rft_id=info:pmid/32641825&rft_galeid=A629635696&rfr_iscdi=true |