Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution

As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-08, Vol.12 (33), p.37108-37115
Hauptverfasser: Zhang, Xin, Zhao, Fulai, Wang, Yu, Liang, Xuejing, Zhang, Zhixing, Feng, Yiyu, Li, Yu, Tang, Lin, Feng, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37115
container_issue 33
container_start_page 37108
container_title ACS applied materials & interfaces
container_volume 12
creator Zhang, Xin
Zhao, Fulai
Wang, Yu
Liang, Xuejing
Zhang, Zhixing
Feng, Yiyu
Li, Yu
Tang, Lin
Feng, Wei
description As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of GeTe nanosheets by ultrasonic-assisted liquid-phase exfoliation in argon and air, which we referred to as Ar-GeTe and O-GeTe, respectively. The photocatalytic hydrogen production potential of 2D GeTe was experimentally investigated for the first time. The results indicated that minimally layered GeTe samples are indirect-gap semiconductors with the GeTe band gap increasing after oxidation. All samples have suitable band positions that can drive photocatalytic water splitting into H2 under mild conditions, providing maximum hydrogen evolution rates of 1.13 mmol g–1 h–1 (Ar-GeTe) and 0.54 mmol g–1 h–1 (O-GeTe). With density functional theory computations, the structural stability of GeTe in air was discussed, revealing that oxygen atoms could easily combine with Ge to form a more stable structure, thus impacting the photocatalytic performance of 2D GeTe. Therefore, the light requirement and oxygen deficiency of the material give an advantage in the field of energy supply in space.
doi_str_mv 10.1021/acsami.0c08699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2422007998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422007998</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-1fd0b97d0aaac04e85208c3e050ee59f5bf14522e7bdfe11656ff0294f8326473</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhosoOKdXzzmK0PklTX95G3NuwsCB8-CppOkXzWibmaRK_3srHd48fS8fz_seniC4pjCjwOidkE40egYSsiTPT4IJzTkPMxaz07_M-Xlw4dweIIkYxJPgbfdtwgfdYOu0aUVNVrjDezLXlrx4Uepa-56ItiLbD-ONFF7UvdeSbNEqYxvRSiRDIOu-suYdW7L8MnXnh63L4EyJ2uHV8U6D18flbrEON8-rp8V8E4oojXxIVQVlnlYghJDAMYsZZDJCiAExzlVcKspjxjAtK4WUJnGiFLCcqyxiCU-jaXAz7h6s-ezQ-aLRTmJdixZN5wrGGQNI8zwb0NmISmucs6iKg9WNsH1Bofh1WIwOi6PDoXA7FoZ_sTedHQy5_-AfHs50cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422007998</pqid></control><display><type>article</type><title>Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution</title><source>ACS Publications</source><creator>Zhang, Xin ; Zhao, Fulai ; Wang, Yu ; Liang, Xuejing ; Zhang, Zhixing ; Feng, Yiyu ; Li, Yu ; Tang, Lin ; Feng, Wei</creator><creatorcontrib>Zhang, Xin ; Zhao, Fulai ; Wang, Yu ; Liang, Xuejing ; Zhang, Zhixing ; Feng, Yiyu ; Li, Yu ; Tang, Lin ; Feng, Wei</creatorcontrib><description>As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of GeTe nanosheets by ultrasonic-assisted liquid-phase exfoliation in argon and air, which we referred to as Ar-GeTe and O-GeTe, respectively. The photocatalytic hydrogen production potential of 2D GeTe was experimentally investigated for the first time. The results indicated that minimally layered GeTe samples are indirect-gap semiconductors with the GeTe band gap increasing after oxidation. All samples have suitable band positions that can drive photocatalytic water splitting into H2 under mild conditions, providing maximum hydrogen evolution rates of 1.13 mmol g–1 h–1 (Ar-GeTe) and 0.54 mmol g–1 h–1 (O-GeTe). With density functional theory computations, the structural stability of GeTe in air was discussed, revealing that oxygen atoms could easily combine with Ge to form a more stable structure, thus impacting the photocatalytic performance of 2D GeTe. Therefore, the light requirement and oxygen deficiency of the material give an advantage in the field of energy supply in space.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c08699</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2020-08, Vol.12 (33), p.37108-37115</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-1fd0b97d0aaac04e85208c3e050ee59f5bf14522e7bdfe11656ff0294f8326473</citedby><cites>FETCH-LOGICAL-a373t-1fd0b97d0aaac04e85208c3e050ee59f5bf14522e7bdfe11656ff0294f8326473</cites><orcidid>0000-0002-5149-1810 ; 0000-0002-5816-7343 ; 0000-0002-1071-1995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c08699$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c08699$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Zhao, Fulai</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Liang, Xuejing</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Feng, Yiyu</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Tang, Lin</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><title>Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of GeTe nanosheets by ultrasonic-assisted liquid-phase exfoliation in argon and air, which we referred to as Ar-GeTe and O-GeTe, respectively. The photocatalytic hydrogen production potential of 2D GeTe was experimentally investigated for the first time. The results indicated that minimally layered GeTe samples are indirect-gap semiconductors with the GeTe band gap increasing after oxidation. All samples have suitable band positions that can drive photocatalytic water splitting into H2 under mild conditions, providing maximum hydrogen evolution rates of 1.13 mmol g–1 h–1 (Ar-GeTe) and 0.54 mmol g–1 h–1 (O-GeTe). With density functional theory computations, the structural stability of GeTe in air was discussed, revealing that oxygen atoms could easily combine with Ge to form a more stable structure, thus impacting the photocatalytic performance of 2D GeTe. Therefore, the light requirement and oxygen deficiency of the material give an advantage in the field of energy supply in space.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhosoOKdXzzmK0PklTX95G3NuwsCB8-CppOkXzWibmaRK_3srHd48fS8fz_seniC4pjCjwOidkE40egYSsiTPT4IJzTkPMxaz07_M-Xlw4dweIIkYxJPgbfdtwgfdYOu0aUVNVrjDezLXlrx4Uepa-56ItiLbD-ONFF7UvdeSbNEqYxvRSiRDIOu-suYdW7L8MnXnh63L4EyJ2uHV8U6D18flbrEON8-rp8V8E4oojXxIVQVlnlYghJDAMYsZZDJCiAExzlVcKspjxjAtK4WUJnGiFLCcqyxiCU-jaXAz7h6s-ezQ-aLRTmJdixZN5wrGGQNI8zwb0NmISmucs6iKg9WNsH1Bofh1WIwOi6PDoXA7FoZ_sTedHQy5_-AfHs50cg</recordid><startdate>20200819</startdate><enddate>20200819</enddate><creator>Zhang, Xin</creator><creator>Zhao, Fulai</creator><creator>Wang, Yu</creator><creator>Liang, Xuejing</creator><creator>Zhang, Zhixing</creator><creator>Feng, Yiyu</creator><creator>Li, Yu</creator><creator>Tang, Lin</creator><creator>Feng, Wei</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5149-1810</orcidid><orcidid>https://orcid.org/0000-0002-5816-7343</orcidid><orcidid>https://orcid.org/0000-0002-1071-1995</orcidid></search><sort><creationdate>20200819</creationdate><title>Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution</title><author>Zhang, Xin ; Zhao, Fulai ; Wang, Yu ; Liang, Xuejing ; Zhang, Zhixing ; Feng, Yiyu ; Li, Yu ; Tang, Lin ; Feng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-1fd0b97d0aaac04e85208c3e050ee59f5bf14522e7bdfe11656ff0294f8326473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Zhao, Fulai</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Liang, Xuejing</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Feng, Yiyu</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Tang, Lin</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin</au><au>Zhao, Fulai</au><au>Wang, Yu</au><au>Liang, Xuejing</au><au>Zhang, Zhixing</au><au>Feng, Yiyu</au><au>Li, Yu</au><au>Tang, Lin</au><au>Feng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-08-19</date><risdate>2020</risdate><volume>12</volume><issue>33</issue><spage>37108</spage><epage>37115</epage><pages>37108-37115</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of GeTe nanosheets by ultrasonic-assisted liquid-phase exfoliation in argon and air, which we referred to as Ar-GeTe and O-GeTe, respectively. The photocatalytic hydrogen production potential of 2D GeTe was experimentally investigated for the first time. The results indicated that minimally layered GeTe samples are indirect-gap semiconductors with the GeTe band gap increasing after oxidation. All samples have suitable band positions that can drive photocatalytic water splitting into H2 under mild conditions, providing maximum hydrogen evolution rates of 1.13 mmol g–1 h–1 (Ar-GeTe) and 0.54 mmol g–1 h–1 (O-GeTe). With density functional theory computations, the structural stability of GeTe in air was discussed, revealing that oxygen atoms could easily combine with Ge to form a more stable structure, thus impacting the photocatalytic performance of 2D GeTe. Therefore, the light requirement and oxygen deficiency of the material give an advantage in the field of energy supply in space.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c08699</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5149-1810</orcidid><orcidid>https://orcid.org/0000-0002-5816-7343</orcidid><orcidid>https://orcid.org/0000-0002-1071-1995</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-08, Vol.12 (33), p.37108-37115
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2422007998
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20GeTe:%20Air%20Stability%20and%20Photocatalytic%20Performance%20for%20Hydrogen%20Evolution&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Xin&rft.date=2020-08-19&rft.volume=12&rft.issue=33&rft.spage=37108&rft.epage=37115&rft.pages=37108-37115&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c08699&rft_dat=%3Cproquest_cross%3E2422007998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422007998&rft_id=info:pmid/&rfr_iscdi=true