Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution
As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-08, Vol.12 (33), p.37108-37115 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37115 |
---|---|
container_issue | 33 |
container_start_page | 37108 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Zhang, Xin Zhao, Fulai Wang, Yu Liang, Xuejing Zhang, Zhixing Feng, Yiyu Li, Yu Tang, Lin Feng, Wei |
description | As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of GeTe nanosheets by ultrasonic-assisted liquid-phase exfoliation in argon and air, which we referred to as Ar-GeTe and O-GeTe, respectively. The photocatalytic hydrogen production potential of 2D GeTe was experimentally investigated for the first time. The results indicated that minimally layered GeTe samples are indirect-gap semiconductors with the GeTe band gap increasing after oxidation. All samples have suitable band positions that can drive photocatalytic water splitting into H2 under mild conditions, providing maximum hydrogen evolution rates of 1.13 mmol g–1 h–1 (Ar-GeTe) and 0.54 mmol g–1 h–1 (O-GeTe). With density functional theory computations, the structural stability of GeTe in air was discussed, revealing that oxygen atoms could easily combine with Ge to form a more stable structure, thus impacting the photocatalytic performance of 2D GeTe. Therefore, the light requirement and oxygen deficiency of the material give an advantage in the field of energy supply in space. |
doi_str_mv | 10.1021/acsami.0c08699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2422007998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422007998</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-1fd0b97d0aaac04e85208c3e050ee59f5bf14522e7bdfe11656ff0294f8326473</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhosoOKdXzzmK0PklTX95G3NuwsCB8-CppOkXzWibmaRK_3srHd48fS8fz_seniC4pjCjwOidkE40egYSsiTPT4IJzTkPMxaz07_M-Xlw4dweIIkYxJPgbfdtwgfdYOu0aUVNVrjDezLXlrx4Uepa-56ItiLbD-ONFF7UvdeSbNEqYxvRSiRDIOu-suYdW7L8MnXnh63L4EyJ2uHV8U6D18flbrEON8-rp8V8E4oojXxIVQVlnlYghJDAMYsZZDJCiAExzlVcKspjxjAtK4WUJnGiFLCcqyxiCU-jaXAz7h6s-ezQ-aLRTmJdixZN5wrGGQNI8zwb0NmISmucs6iKg9WNsH1Bofh1WIwOi6PDoXA7FoZ_sTedHQy5_-AfHs50cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422007998</pqid></control><display><type>article</type><title>Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution</title><source>ACS Publications</source><creator>Zhang, Xin ; Zhao, Fulai ; Wang, Yu ; Liang, Xuejing ; Zhang, Zhixing ; Feng, Yiyu ; Li, Yu ; Tang, Lin ; Feng, Wei</creator><creatorcontrib>Zhang, Xin ; Zhao, Fulai ; Wang, Yu ; Liang, Xuejing ; Zhang, Zhixing ; Feng, Yiyu ; Li, Yu ; Tang, Lin ; Feng, Wei</creatorcontrib><description>As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of GeTe nanosheets by ultrasonic-assisted liquid-phase exfoliation in argon and air, which we referred to as Ar-GeTe and O-GeTe, respectively. The photocatalytic hydrogen production potential of 2D GeTe was experimentally investigated for the first time. The results indicated that minimally layered GeTe samples are indirect-gap semiconductors with the GeTe band gap increasing after oxidation. All samples have suitable band positions that can drive photocatalytic water splitting into H2 under mild conditions, providing maximum hydrogen evolution rates of 1.13 mmol g–1 h–1 (Ar-GeTe) and 0.54 mmol g–1 h–1 (O-GeTe). With density functional theory computations, the structural stability of GeTe in air was discussed, revealing that oxygen atoms could easily combine with Ge to form a more stable structure, thus impacting the photocatalytic performance of 2D GeTe. Therefore, the light requirement and oxygen deficiency of the material give an advantage in the field of energy supply in space.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c08699</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2020-08, Vol.12 (33), p.37108-37115</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-1fd0b97d0aaac04e85208c3e050ee59f5bf14522e7bdfe11656ff0294f8326473</citedby><cites>FETCH-LOGICAL-a373t-1fd0b97d0aaac04e85208c3e050ee59f5bf14522e7bdfe11656ff0294f8326473</cites><orcidid>0000-0002-5149-1810 ; 0000-0002-5816-7343 ; 0000-0002-1071-1995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c08699$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c08699$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Zhao, Fulai</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Liang, Xuejing</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Feng, Yiyu</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Tang, Lin</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><title>Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of GeTe nanosheets by ultrasonic-assisted liquid-phase exfoliation in argon and air, which we referred to as Ar-GeTe and O-GeTe, respectively. The photocatalytic hydrogen production potential of 2D GeTe was experimentally investigated for the first time. The results indicated that minimally layered GeTe samples are indirect-gap semiconductors with the GeTe band gap increasing after oxidation. All samples have suitable band positions that can drive photocatalytic water splitting into H2 under mild conditions, providing maximum hydrogen evolution rates of 1.13 mmol g–1 h–1 (Ar-GeTe) and 0.54 mmol g–1 h–1 (O-GeTe). With density functional theory computations, the structural stability of GeTe in air was discussed, revealing that oxygen atoms could easily combine with Ge to form a more stable structure, thus impacting the photocatalytic performance of 2D GeTe. Therefore, the light requirement and oxygen deficiency of the material give an advantage in the field of energy supply in space.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhosoOKdXzzmK0PklTX95G3NuwsCB8-CppOkXzWibmaRK_3srHd48fS8fz_seniC4pjCjwOidkE40egYSsiTPT4IJzTkPMxaz07_M-Xlw4dweIIkYxJPgbfdtwgfdYOu0aUVNVrjDezLXlrx4Uepa-56ItiLbD-ONFF7UvdeSbNEqYxvRSiRDIOu-suYdW7L8MnXnh63L4EyJ2uHV8U6D18flbrEON8-rp8V8E4oojXxIVQVlnlYghJDAMYsZZDJCiAExzlVcKspjxjAtK4WUJnGiFLCcqyxiCU-jaXAz7h6s-ezQ-aLRTmJdixZN5wrGGQNI8zwb0NmISmucs6iKg9WNsH1Bofh1WIwOi6PDoXA7FoZ_sTedHQy5_-AfHs50cg</recordid><startdate>20200819</startdate><enddate>20200819</enddate><creator>Zhang, Xin</creator><creator>Zhao, Fulai</creator><creator>Wang, Yu</creator><creator>Liang, Xuejing</creator><creator>Zhang, Zhixing</creator><creator>Feng, Yiyu</creator><creator>Li, Yu</creator><creator>Tang, Lin</creator><creator>Feng, Wei</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5149-1810</orcidid><orcidid>https://orcid.org/0000-0002-5816-7343</orcidid><orcidid>https://orcid.org/0000-0002-1071-1995</orcidid></search><sort><creationdate>20200819</creationdate><title>Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution</title><author>Zhang, Xin ; Zhao, Fulai ; Wang, Yu ; Liang, Xuejing ; Zhang, Zhixing ; Feng, Yiyu ; Li, Yu ; Tang, Lin ; Feng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-1fd0b97d0aaac04e85208c3e050ee59f5bf14522e7bdfe11656ff0294f8326473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Zhao, Fulai</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Liang, Xuejing</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Feng, Yiyu</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Tang, Lin</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin</au><au>Zhao, Fulai</au><au>Wang, Yu</au><au>Liang, Xuejing</au><au>Zhang, Zhixing</au><au>Feng, Yiyu</au><au>Li, Yu</au><au>Tang, Lin</au><au>Feng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-08-19</date><risdate>2020</risdate><volume>12</volume><issue>33</issue><spage>37108</spage><epage>37115</epage><pages>37108-37115</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>As a key method to convert solar into chemical energy, photocatalytic water decomposition has garnered attention. Moreover, the development of graphene and graphene-like two-dimensional (2D) materials has brought fresh vitality in the field of photocatalysis. Here, we prepared two to four layers of GeTe nanosheets by ultrasonic-assisted liquid-phase exfoliation in argon and air, which we referred to as Ar-GeTe and O-GeTe, respectively. The photocatalytic hydrogen production potential of 2D GeTe was experimentally investigated for the first time. The results indicated that minimally layered GeTe samples are indirect-gap semiconductors with the GeTe band gap increasing after oxidation. All samples have suitable band positions that can drive photocatalytic water splitting into H2 under mild conditions, providing maximum hydrogen evolution rates of 1.13 mmol g–1 h–1 (Ar-GeTe) and 0.54 mmol g–1 h–1 (O-GeTe). With density functional theory computations, the structural stability of GeTe in air was discussed, revealing that oxygen atoms could easily combine with Ge to form a more stable structure, thus impacting the photocatalytic performance of 2D GeTe. Therefore, the light requirement and oxygen deficiency of the material give an advantage in the field of energy supply in space.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c08699</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5149-1810</orcidid><orcidid>https://orcid.org/0000-0002-5816-7343</orcidid><orcidid>https://orcid.org/0000-0002-1071-1995</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-08, Vol.12 (33), p.37108-37115 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2422007998 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20GeTe:%20Air%20Stability%20and%20Photocatalytic%20Performance%20for%20Hydrogen%20Evolution&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Xin&rft.date=2020-08-19&rft.volume=12&rft.issue=33&rft.spage=37108&rft.epage=37115&rft.pages=37108-37115&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c08699&rft_dat=%3Cproquest_cross%3E2422007998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422007998&rft_id=info:pmid/&rfr_iscdi=true |