The Mitotic Crosslinking Protein PRC1 Acts Like a Mechanical Dashpot to Resist Microtubule Sliding
Cell division in eukaryotes requires the regulated assembly of the spindle apparatus. The proper organization of microtubules within the spindle is driven by motor proteins that exert forces to slide filaments, whereas non-motor proteins crosslink filaments into higher-order motifs, such as overlapp...
Gespeichert in:
Veröffentlicht in: | Developmental cell 2020-08, Vol.54 (3), p.367-378.e5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378.e5 |
---|---|
container_issue | 3 |
container_start_page | 367 |
container_title | Developmental cell |
container_volume | 54 |
creator | Gaska, Ignas Armstrong, Mason E. Alfieri, April Forth, Scott |
description | Cell division in eukaryotes requires the regulated assembly of the spindle apparatus. The proper organization of microtubules within the spindle is driven by motor proteins that exert forces to slide filaments, whereas non-motor proteins crosslink filaments into higher-order motifs, such as overlapping bundles. It is not clear how active and passive forces are integrated to produce regulated mechanical outputs within spindles. Here, we employ simultaneous optical trapping and total internal reflection fluorescence (TIRF) microscopy to directly measure the frictional forces produced by the mitotic crosslinking protein PRC1 that resist microtubule sliding. These forces scale with microtubule sliding velocity and the number of PRC1 crosslinks but do not depend on overlap length or PRC1 density within overlaps. Our results suggest that PRC1 ensembles act similarly to a mechanical dashpot, producing significant resistance against fast motions but minimal resistance against slow motions, allowing for the integration of diverse motor activities into a single mechanical outcome.
[Display omitted]
•Ensembles of the mitotic crosslinking protein PRC1 generate frictional forces•Resistance to microtubule sliding scales linearly with filament velocity•Frictional forces scale with PRC1 number but not overlap length or PRC1 density•PRC1 acts as a viscous dashpot to regulate microtubule velocities in dividing cells
Successful cell division requires the precisely timed positioning of chromosomes. Gaska et al. demonstrate that the essential mitotic crosslinking protein PRC1 generates viscous forces that resist microtubule sliding. PRC1 behaves like a damper that inhibits fast motions while permitting slow motions, thereby regulating microtubule speeds and positions within the spindle. |
doi_str_mv | 10.1016/j.devcel.2020.06.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2422005199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580720304962</els_id><sourcerecordid>2422005199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-df4e68acc52ac3837de73172d219fe97eb749449f52a6a1149be0889ca3642a23</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk7_gUguvWlN0rRNb4QxP2HDMed1SNNTl61rZ5MO_PdmdHrpVQ7kfd7DeRC6piSkhCZ367CAvYYqZISRkCQhoekJGlKRioDGMT31cxzxIBYkHaALa9fEY1SQczSIWMI9xYYoX64Az4xrnNF40jbWVqbemPoTz9vGganxfDGheKydxVOzAazwDPRK1UarCj8ou9o1DrsGL8Aa63yV9lyXdxXg98oUvukSnZWqsnB1fEfo4-lxOXkJpm_Pr5PxNNCcCBcUJYdEKK1jpnQkorSANKIpKxjNSshSyFOecZ6V_j9RlPIsByJEplWUcKZYNEK3fe-ubb46sE5ujfWCKlVD01nJOGOExDTLfJT3UX24uIVS7lqzVe23pEQe7Mq17O3Kg11JEunteuzmuKHLt1D8Qb86feC-D4C_c2-glVYbqDUUpgXtZNGY_zf8AIX-jEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422005199</pqid></control><display><type>article</type><title>The Mitotic Crosslinking Protein PRC1 Acts Like a Mechanical Dashpot to Resist Microtubule Sliding</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gaska, Ignas ; Armstrong, Mason E. ; Alfieri, April ; Forth, Scott</creator><creatorcontrib>Gaska, Ignas ; Armstrong, Mason E. ; Alfieri, April ; Forth, Scott</creatorcontrib><description>Cell division in eukaryotes requires the regulated assembly of the spindle apparatus. The proper organization of microtubules within the spindle is driven by motor proteins that exert forces to slide filaments, whereas non-motor proteins crosslink filaments into higher-order motifs, such as overlapping bundles. It is not clear how active and passive forces are integrated to produce regulated mechanical outputs within spindles. Here, we employ simultaneous optical trapping and total internal reflection fluorescence (TIRF) microscopy to directly measure the frictional forces produced by the mitotic crosslinking protein PRC1 that resist microtubule sliding. These forces scale with microtubule sliding velocity and the number of PRC1 crosslinks but do not depend on overlap length or PRC1 density within overlaps. Our results suggest that PRC1 ensembles act similarly to a mechanical dashpot, producing significant resistance against fast motions but minimal resistance against slow motions, allowing for the integration of diverse motor activities into a single mechanical outcome.
[Display omitted]
•Ensembles of the mitotic crosslinking protein PRC1 generate frictional forces•Resistance to microtubule sliding scales linearly with filament velocity•Frictional forces scale with PRC1 number but not overlap length or PRC1 density•PRC1 acts as a viscous dashpot to regulate microtubule velocities in dividing cells
Successful cell division requires the precisely timed positioning of chromosomes. Gaska et al. demonstrate that the essential mitotic crosslinking protein PRC1 generates viscous forces that resist microtubule sliding. PRC1 behaves like a damper that inhibits fast motions while permitting slow motions, thereby regulating microtubule speeds and positions within the spindle.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2020.06.017</identifier><identifier>PMID: 32640202</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>biophysics ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; central spindle ; cytoskeleton ; friction ; HeLa Cells ; Humans ; Kinesin - metabolism ; microtubule-associated proteins ; microtubules ; Microtubules - genetics ; Microtubules - metabolism ; mitosis ; Mitosis - physiology ; PRC1 ; Spindle Apparatus - genetics ; Spindle Apparatus - metabolism ; spindle mechanics ; viscosity</subject><ispartof>Developmental cell, 2020-08, Vol.54 (3), p.367-378.e5</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-df4e68acc52ac3837de73172d219fe97eb749449f52a6a1149be0889ca3642a23</citedby><cites>FETCH-LOGICAL-c408t-df4e68acc52ac3837de73172d219fe97eb749449f52a6a1149be0889ca3642a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.devcel.2020.06.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32640202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaska, Ignas</creatorcontrib><creatorcontrib>Armstrong, Mason E.</creatorcontrib><creatorcontrib>Alfieri, April</creatorcontrib><creatorcontrib>Forth, Scott</creatorcontrib><title>The Mitotic Crosslinking Protein PRC1 Acts Like a Mechanical Dashpot to Resist Microtubule Sliding</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>Cell division in eukaryotes requires the regulated assembly of the spindle apparatus. The proper organization of microtubules within the spindle is driven by motor proteins that exert forces to slide filaments, whereas non-motor proteins crosslink filaments into higher-order motifs, such as overlapping bundles. It is not clear how active and passive forces are integrated to produce regulated mechanical outputs within spindles. Here, we employ simultaneous optical trapping and total internal reflection fluorescence (TIRF) microscopy to directly measure the frictional forces produced by the mitotic crosslinking protein PRC1 that resist microtubule sliding. These forces scale with microtubule sliding velocity and the number of PRC1 crosslinks but do not depend on overlap length or PRC1 density within overlaps. Our results suggest that PRC1 ensembles act similarly to a mechanical dashpot, producing significant resistance against fast motions but minimal resistance against slow motions, allowing for the integration of diverse motor activities into a single mechanical outcome.
[Display omitted]
•Ensembles of the mitotic crosslinking protein PRC1 generate frictional forces•Resistance to microtubule sliding scales linearly with filament velocity•Frictional forces scale with PRC1 number but not overlap length or PRC1 density•PRC1 acts as a viscous dashpot to regulate microtubule velocities in dividing cells
Successful cell division requires the precisely timed positioning of chromosomes. Gaska et al. demonstrate that the essential mitotic crosslinking protein PRC1 generates viscous forces that resist microtubule sliding. PRC1 behaves like a damper that inhibits fast motions while permitting slow motions, thereby regulating microtubule speeds and positions within the spindle.</description><subject>biophysics</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>central spindle</subject><subject>cytoskeleton</subject><subject>friction</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinesin - metabolism</subject><subject>microtubule-associated proteins</subject><subject>microtubules</subject><subject>Microtubules - genetics</subject><subject>Microtubules - metabolism</subject><subject>mitosis</subject><subject>Mitosis - physiology</subject><subject>PRC1</subject><subject>Spindle Apparatus - genetics</subject><subject>Spindle Apparatus - metabolism</subject><subject>spindle mechanics</subject><subject>viscosity</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobk7_gUguvWlN0rRNb4QxP2HDMed1SNNTl61rZ5MO_PdmdHrpVQ7kfd7DeRC6piSkhCZ367CAvYYqZISRkCQhoekJGlKRioDGMT31cxzxIBYkHaALa9fEY1SQczSIWMI9xYYoX64Az4xrnNF40jbWVqbemPoTz9vGganxfDGheKydxVOzAazwDPRK1UarCj8ou9o1DrsGL8Aa63yV9lyXdxXg98oUvukSnZWqsnB1fEfo4-lxOXkJpm_Pr5PxNNCcCBcUJYdEKK1jpnQkorSANKIpKxjNSshSyFOecZ6V_j9RlPIsByJEplWUcKZYNEK3fe-ubb46sE5ujfWCKlVD01nJOGOExDTLfJT3UX24uIVS7lqzVe23pEQe7Mq17O3Kg11JEunteuzmuKHLt1D8Qb86feC-D4C_c2-glVYbqDUUpgXtZNGY_zf8AIX-jEI</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Gaska, Ignas</creator><creator>Armstrong, Mason E.</creator><creator>Alfieri, April</creator><creator>Forth, Scott</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200810</creationdate><title>The Mitotic Crosslinking Protein PRC1 Acts Like a Mechanical Dashpot to Resist Microtubule Sliding</title><author>Gaska, Ignas ; Armstrong, Mason E. ; Alfieri, April ; Forth, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-df4e68acc52ac3837de73172d219fe97eb749449f52a6a1149be0889ca3642a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biophysics</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>central spindle</topic><topic>cytoskeleton</topic><topic>friction</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinesin - metabolism</topic><topic>microtubule-associated proteins</topic><topic>microtubules</topic><topic>Microtubules - genetics</topic><topic>Microtubules - metabolism</topic><topic>mitosis</topic><topic>Mitosis - physiology</topic><topic>PRC1</topic><topic>Spindle Apparatus - genetics</topic><topic>Spindle Apparatus - metabolism</topic><topic>spindle mechanics</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaska, Ignas</creatorcontrib><creatorcontrib>Armstrong, Mason E.</creatorcontrib><creatorcontrib>Alfieri, April</creatorcontrib><creatorcontrib>Forth, Scott</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaska, Ignas</au><au>Armstrong, Mason E.</au><au>Alfieri, April</au><au>Forth, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mitotic Crosslinking Protein PRC1 Acts Like a Mechanical Dashpot to Resist Microtubule Sliding</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2020-08-10</date><risdate>2020</risdate><volume>54</volume><issue>3</issue><spage>367</spage><epage>378.e5</epage><pages>367-378.e5</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>Cell division in eukaryotes requires the regulated assembly of the spindle apparatus. The proper organization of microtubules within the spindle is driven by motor proteins that exert forces to slide filaments, whereas non-motor proteins crosslink filaments into higher-order motifs, such as overlapping bundles. It is not clear how active and passive forces are integrated to produce regulated mechanical outputs within spindles. Here, we employ simultaneous optical trapping and total internal reflection fluorescence (TIRF) microscopy to directly measure the frictional forces produced by the mitotic crosslinking protein PRC1 that resist microtubule sliding. These forces scale with microtubule sliding velocity and the number of PRC1 crosslinks but do not depend on overlap length or PRC1 density within overlaps. Our results suggest that PRC1 ensembles act similarly to a mechanical dashpot, producing significant resistance against fast motions but minimal resistance against slow motions, allowing for the integration of diverse motor activities into a single mechanical outcome.
[Display omitted]
•Ensembles of the mitotic crosslinking protein PRC1 generate frictional forces•Resistance to microtubule sliding scales linearly with filament velocity•Frictional forces scale with PRC1 number but not overlap length or PRC1 density•PRC1 acts as a viscous dashpot to regulate microtubule velocities in dividing cells
Successful cell division requires the precisely timed positioning of chromosomes. Gaska et al. demonstrate that the essential mitotic crosslinking protein PRC1 generates viscous forces that resist microtubule sliding. PRC1 behaves like a damper that inhibits fast motions while permitting slow motions, thereby regulating microtubule speeds and positions within the spindle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32640202</pmid><doi>10.1016/j.devcel.2020.06.017</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-5807 |
ispartof | Developmental cell, 2020-08, Vol.54 (3), p.367-378.e5 |
issn | 1534-5807 1878-1551 |
language | eng |
recordid | cdi_proquest_miscellaneous_2422005199 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | biophysics Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism central spindle cytoskeleton friction HeLa Cells Humans Kinesin - metabolism microtubule-associated proteins microtubules Microtubules - genetics Microtubules - metabolism mitosis Mitosis - physiology PRC1 Spindle Apparatus - genetics Spindle Apparatus - metabolism spindle mechanics viscosity |
title | The Mitotic Crosslinking Protein PRC1 Acts Like a Mechanical Dashpot to Resist Microtubule Sliding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mitotic%20Crosslinking%20Protein%20PRC1%20Acts%20Like%20a%20Mechanical%20Dashpot%20to%20Resist%20Microtubule%20Sliding&rft.jtitle=Developmental%20cell&rft.au=Gaska,%20Ignas&rft.date=2020-08-10&rft.volume=54&rft.issue=3&rft.spage=367&rft.epage=378.e5&rft.pages=367-378.e5&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2020.06.017&rft_dat=%3Cproquest_cross%3E2422005199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422005199&rft_id=info:pmid/32640202&rft_els_id=S1534580720304962&rfr_iscdi=true |