Investigating the origins of ultra-short relaxation times of silver filaments in forming-free SiO2-based conductive bridge memristors

The threshold switching effect is considered of outmost importance for a variety of applications ranging from the reliable operation of crossbar architectures to emulating neuromorphic properties with artificial neural networks. This property is strongly believed to be associated with the rich inher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2020-11, Vol.31 (45), p.454002-454002
Hauptverfasser: Bousoulas, Panagiotis, Sakellaropoulos, Dionisis, Papakonstantinopoulos, Charalampos, Kitsios, Stavros, Arvanitis, Chris, Bagakis, Emmanouil, Tsoukalas, Dimitris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454002
container_issue 45
container_start_page 454002
container_title Nanotechnology
container_volume 31
creator Bousoulas, Panagiotis
Sakellaropoulos, Dionisis
Papakonstantinopoulos, Charalampos
Kitsios, Stavros
Arvanitis, Chris
Bagakis, Emmanouil
Tsoukalas, Dimitris
description The threshold switching effect is considered of outmost importance for a variety of applications ranging from the reliable operation of crossbar architectures to emulating neuromorphic properties with artificial neural networks. This property is strongly believed to be associated with the rich inherit dynamics of a metallic conductive filament (CF) formation and its respective relaxation processes. Understanding the origin of these dynamics is very important in order to control the degree of volatility and design novel electronic devices. Here, we present a synergistic numerical and experimental approach in order to deal with that issue. The distribution of relaxation time is addressed through time-resolved pulse measurements whereas the entire switching behavior is modeled through a 2D dynamical model by taking into account the destructive interference of the drift/diffusion transport mechanisms and the Soret diffusion flux due to the intense local Joule heating. The proposed mechanism interprets successfully both the threshold to bipolar switching transition as well as the self-rectifying effects in SiO2-based memories. The model incorporates the effect of electrode materials on the switching pattern and provides a different perception of the ionic transport processes, shading light into the ultra-small lifetimes of the CF and explaining the different behavior of the silver or copper active materials in a conductive bridge random access memory architecture.
doi_str_mv 10.1088/1361-6528/aba3a1
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421464187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421464187</sourcerecordid><originalsourceid>FETCH-LOGICAL-g264t-a3e20423f5138c9e06aed6bd098562e6f20822b3f41601fb579074cb311a64a03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwZ-klC0L9iuMsUcWjUqUugHXkJOPUVWIX26n4Af6blCJWI905upo5CN1S8kCJUgvKJc1kztRC15preoZm_9E5mpEyLzIhlLhEVzHuCKFUMTpD3yt3gJhsp5N1HU5bwD7YzrqIvcFjn4LO4taHhAP0-muivMPJDvC7j7Y_QMDG9noAlyK2DhsfhqkqMwEAv9kNy2odocWNd-3YJHsAXAfbdoAHGIKNyYd4jS6M7iPc_M05-nh-el--ZuvNy2r5uM46JkXKNAdGBOMmp1w1JRCpoZV1S0qVSwbSMKIYq7kRVBJq6rwoSSGamlOqpdCEz9HdqXcf_Oc4_V0NNjbQ99qBH2PFBKNCCqqKCb0_odbvq50fg5sOqyipjraro9rqqLY62eY_9k51Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421464187</pqid></control><display><type>article</type><title>Investigating the origins of ultra-short relaxation times of silver filaments in forming-free SiO2-based conductive bridge memristors</title><source>Institute of Physics Journals</source><creator>Bousoulas, Panagiotis ; Sakellaropoulos, Dionisis ; Papakonstantinopoulos, Charalampos ; Kitsios, Stavros ; Arvanitis, Chris ; Bagakis, Emmanouil ; Tsoukalas, Dimitris</creator><creatorcontrib>Bousoulas, Panagiotis ; Sakellaropoulos, Dionisis ; Papakonstantinopoulos, Charalampos ; Kitsios, Stavros ; Arvanitis, Chris ; Bagakis, Emmanouil ; Tsoukalas, Dimitris</creatorcontrib><description>The threshold switching effect is considered of outmost importance for a variety of applications ranging from the reliable operation of crossbar architectures to emulating neuromorphic properties with artificial neural networks. This property is strongly believed to be associated with the rich inherit dynamics of a metallic conductive filament (CF) formation and its respective relaxation processes. Understanding the origin of these dynamics is very important in order to control the degree of volatility and design novel electronic devices. Here, we present a synergistic numerical and experimental approach in order to deal with that issue. The distribution of relaxation time is addressed through time-resolved pulse measurements whereas the entire switching behavior is modeled through a 2D dynamical model by taking into account the destructive interference of the drift/diffusion transport mechanisms and the Soret diffusion flux due to the intense local Joule heating. The proposed mechanism interprets successfully both the threshold to bipolar switching transition as well as the self-rectifying effects in SiO2-based memories. The model incorporates the effect of electrode materials on the switching pattern and provides a different perception of the ionic transport processes, shading light into the ultra-small lifetimes of the CF and explaining the different behavior of the silver or copper active materials in a conductive bridge random access memory architecture.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/aba3a1</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>conducting filament ; Joule heating ; memristor ; numerical simulations ; Soret diffusion ; threshold switching</subject><ispartof>Nanotechnology, 2020-11, Vol.31 (45), p.454002-454002</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8136-365X ; 0000-0002-5395-0777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/aba3a1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Bousoulas, Panagiotis</creatorcontrib><creatorcontrib>Sakellaropoulos, Dionisis</creatorcontrib><creatorcontrib>Papakonstantinopoulos, Charalampos</creatorcontrib><creatorcontrib>Kitsios, Stavros</creatorcontrib><creatorcontrib>Arvanitis, Chris</creatorcontrib><creatorcontrib>Bagakis, Emmanouil</creatorcontrib><creatorcontrib>Tsoukalas, Dimitris</creatorcontrib><title>Investigating the origins of ultra-short relaxation times of silver filaments in forming-free SiO2-based conductive bridge memristors</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>The threshold switching effect is considered of outmost importance for a variety of applications ranging from the reliable operation of crossbar architectures to emulating neuromorphic properties with artificial neural networks. This property is strongly believed to be associated with the rich inherit dynamics of a metallic conductive filament (CF) formation and its respective relaxation processes. Understanding the origin of these dynamics is very important in order to control the degree of volatility and design novel electronic devices. Here, we present a synergistic numerical and experimental approach in order to deal with that issue. The distribution of relaxation time is addressed through time-resolved pulse measurements whereas the entire switching behavior is modeled through a 2D dynamical model by taking into account the destructive interference of the drift/diffusion transport mechanisms and the Soret diffusion flux due to the intense local Joule heating. The proposed mechanism interprets successfully both the threshold to bipolar switching transition as well as the self-rectifying effects in SiO2-based memories. The model incorporates the effect of electrode materials on the switching pattern and provides a different perception of the ionic transport processes, shading light into the ultra-small lifetimes of the CF and explaining the different behavior of the silver or copper active materials in a conductive bridge random access memory architecture.</description><subject>conducting filament</subject><subject>Joule heating</subject><subject>memristor</subject><subject>numerical simulations</subject><subject>Soret diffusion</subject><subject>threshold switching</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqWwZ-klC0L9iuMsUcWjUqUugHXkJOPUVWIX26n4Af6blCJWI905upo5CN1S8kCJUgvKJc1kztRC15preoZm_9E5mpEyLzIhlLhEVzHuCKFUMTpD3yt3gJhsp5N1HU5bwD7YzrqIvcFjn4LO4taHhAP0-muivMPJDvC7j7Y_QMDG9noAlyK2DhsfhqkqMwEAv9kNy2odocWNd-3YJHsAXAfbdoAHGIKNyYd4jS6M7iPc_M05-nh-el--ZuvNy2r5uM46JkXKNAdGBOMmp1w1JRCpoZV1S0qVSwbSMKIYq7kRVBJq6rwoSSGamlOqpdCEz9HdqXcf_Oc4_V0NNjbQ99qBH2PFBKNCCqqKCb0_odbvq50fg5sOqyipjraro9rqqLY62eY_9k51Ig</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Bousoulas, Panagiotis</creator><creator>Sakellaropoulos, Dionisis</creator><creator>Papakonstantinopoulos, Charalampos</creator><creator>Kitsios, Stavros</creator><creator>Arvanitis, Chris</creator><creator>Bagakis, Emmanouil</creator><creator>Tsoukalas, Dimitris</creator><general>IOP Publishing</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8136-365X</orcidid><orcidid>https://orcid.org/0000-0002-5395-0777</orcidid></search><sort><creationdate>20201106</creationdate><title>Investigating the origins of ultra-short relaxation times of silver filaments in forming-free SiO2-based conductive bridge memristors</title><author>Bousoulas, Panagiotis ; Sakellaropoulos, Dionisis ; Papakonstantinopoulos, Charalampos ; Kitsios, Stavros ; Arvanitis, Chris ; Bagakis, Emmanouil ; Tsoukalas, Dimitris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g264t-a3e20423f5138c9e06aed6bd098562e6f20822b3f41601fb579074cb311a64a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>conducting filament</topic><topic>Joule heating</topic><topic>memristor</topic><topic>numerical simulations</topic><topic>Soret diffusion</topic><topic>threshold switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousoulas, Panagiotis</creatorcontrib><creatorcontrib>Sakellaropoulos, Dionisis</creatorcontrib><creatorcontrib>Papakonstantinopoulos, Charalampos</creatorcontrib><creatorcontrib>Kitsios, Stavros</creatorcontrib><creatorcontrib>Arvanitis, Chris</creatorcontrib><creatorcontrib>Bagakis, Emmanouil</creatorcontrib><creatorcontrib>Tsoukalas, Dimitris</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousoulas, Panagiotis</au><au>Sakellaropoulos, Dionisis</au><au>Papakonstantinopoulos, Charalampos</au><au>Kitsios, Stavros</au><au>Arvanitis, Chris</au><au>Bagakis, Emmanouil</au><au>Tsoukalas, Dimitris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the origins of ultra-short relaxation times of silver filaments in forming-free SiO2-based conductive bridge memristors</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>31</volume><issue>45</issue><spage>454002</spage><epage>454002</epage><pages>454002-454002</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>The threshold switching effect is considered of outmost importance for a variety of applications ranging from the reliable operation of crossbar architectures to emulating neuromorphic properties with artificial neural networks. This property is strongly believed to be associated with the rich inherit dynamics of a metallic conductive filament (CF) formation and its respective relaxation processes. Understanding the origin of these dynamics is very important in order to control the degree of volatility and design novel electronic devices. Here, we present a synergistic numerical and experimental approach in order to deal with that issue. The distribution of relaxation time is addressed through time-resolved pulse measurements whereas the entire switching behavior is modeled through a 2D dynamical model by taking into account the destructive interference of the drift/diffusion transport mechanisms and the Soret diffusion flux due to the intense local Joule heating. The proposed mechanism interprets successfully both the threshold to bipolar switching transition as well as the self-rectifying effects in SiO2-based memories. The model incorporates the effect of electrode materials on the switching pattern and provides a different perception of the ionic transport processes, shading light into the ultra-small lifetimes of the CF and explaining the different behavior of the silver or copper active materials in a conductive bridge random access memory architecture.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6528/aba3a1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8136-365X</orcidid><orcidid>https://orcid.org/0000-0002-5395-0777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2020-11, Vol.31 (45), p.454002-454002
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_2421464187
source Institute of Physics Journals
subjects conducting filament
Joule heating
memristor
numerical simulations
Soret diffusion
threshold switching
title Investigating the origins of ultra-short relaxation times of silver filaments in forming-free SiO2-based conductive bridge memristors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20origins%20of%20ultra-short%20relaxation%20times%20of%20silver%20filaments%20in%20forming-free%20SiO2-based%20conductive%20bridge%20memristors&rft.jtitle=Nanotechnology&rft.au=Bousoulas,%20Panagiotis&rft.date=2020-11-06&rft.volume=31&rft.issue=45&rft.spage=454002&rft.epage=454002&rft.pages=454002-454002&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/aba3a1&rft_dat=%3Cproquest_iop_j%3E2421464187%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421464187&rft_id=info:pmid/&rfr_iscdi=true