Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination

Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2020-07, Vol.82 (7), p.90-90, Article 90
Hauptverfasser: Samson, Julia E., Ray, Dylan D., Porfiri, Maurizio, Miller, Laura A., Garnier, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 7
container_start_page 90
container_title Bulletin of mathematical biology
container_volume 82
creator Samson, Julia E.
Ray, Dylan D.
Porfiri, Maurizio
Miller, Laura A.
Garnier, Simon
description Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a pulsing behavior comes at a high energetic cost, and it has been proposed that coordinating the pulse of individual polyps within a colony might enhance the efficiency of fluid transport. In this paper, we test whether patterns of collective pulsing emerge in coral colonies and investigate possible interactions between polyps within a colony. We video recorded different colonies of Heteroxenia sp. in a laboratory environment. Our methodology is based on the systematic integration of a computer vision algorithm (ISOMAP) and an information-theoretic approach (transfer entropy), offering a vantage point to assess coordination in collective pulsing. Perhaps surprisingly, we did not detect any form of collective pulsing behavior in the colonies. Using artificial data sets, however, we do demonstrate that our methodology is capable of detecting even weak information transfer. The lack of a coordination is consistent with previous work on many cnidarians where coordination between actively pulsing polyps and medusa has not been observed. In our companion paper, we show that there is no fluid dynamic benefit of coordinated pulsing, supporting this result. The lack of coordination coupled with no obvious fluid dynamic benefit to grouping suggests that there may be non-fluid mechanical advantages to forming colonies, such as predator avoidance and defense.
doi_str_mv 10.1007/s11538-020-00759-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421463860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421151287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-5bdd4ac2eceef3f2bcbb115896b3a8ad05a46828e6055277e3ee1780bf1ca8663</originalsourceid><addsrcrecordid>eNp9kc1O3TAQha0KVG5pX6CLyhIbNgF7nB-HHYooXAmpSIWqO8txJmCU2Bc7QWLHQ_QJeZKae2mRWLAajeY7Z8Y-hHzl7IAzVh1GzgshMwYsS21RZ_CBLHgBkNUlgy2yYKyGTELOdsinGG9ZompRfyQ7AkoheZUvyNz4YUAz2XukF_MQrbum1tHf6KztaOODHuIRvdBhosunxz9Xa6Dx42qeMNBfNlrvqHYdXbreh1FPz_3lDfrwQCdPf6IO5oamURL50Fm3Jj6T7T4Z45eXukuuvp9cNmfZ-Y_TZXN8npl04ZQVbdfl2gAaxF700Jq2TW-WddkKLXXHCp2XEiSWrCigqlAg8kqytudGy7IUu2R_47sK_m7GOKnRRoPDoB36OSrIgefpK0qW0L036K2fg0vXrSlecJBVomBDmeBjDNirVbCjDg-KM_UcitqEolIoah2KgiT69mI9tyN2_yX_UkiA2AAxjdw1htfd79j-BQcWmNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421151287</pqid></control><display><type>article</type><title>Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination</title><source>SpringerLink Journals - AutoHoldings</source><creator>Samson, Julia E. ; Ray, Dylan D. ; Porfiri, Maurizio ; Miller, Laura A. ; Garnier, Simon</creator><creatorcontrib>Samson, Julia E. ; Ray, Dylan D. ; Porfiri, Maurizio ; Miller, Laura A. ; Garnier, Simon</creatorcontrib><description>Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a pulsing behavior comes at a high energetic cost, and it has been proposed that coordinating the pulse of individual polyps within a colony might enhance the efficiency of fluid transport. In this paper, we test whether patterns of collective pulsing emerge in coral colonies and investigate possible interactions between polyps within a colony. We video recorded different colonies of Heteroxenia sp. in a laboratory environment. Our methodology is based on the systematic integration of a computer vision algorithm (ISOMAP) and an information-theoretic approach (transfer entropy), offering a vantage point to assess coordination in collective pulsing. Perhaps surprisingly, we did not detect any form of collective pulsing behavior in the colonies. Using artificial data sets, however, we do demonstrate that our methodology is capable of detecting even weak information transfer. The lack of a coordination is consistent with previous work on many cnidarians where coordination between actively pulsing polyps and medusa has not been observed. In our companion paper, we show that there is no fluid dynamic benefit of coordinated pulsing, supporting this result. The lack of coordination coupled with no obvious fluid dynamic benefit to grouping suggests that there may be non-fluid mechanical advantages to forming colonies, such as predator avoidance and defense.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-020-00759-2</identifier><identifier>PMID: 32638174</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alcyonacea ; Algorithms ; Cell Biology ; Colonies ; Computer vision ; Coordination ; Corals ; Diffusion rate ; Entropy ; Fluid dynamics ; Information theory ; Information transfer ; Life Sciences ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Original Article ; Photosynthesis ; Polyps ; Polyps (organisms) ; Symbionts</subject><ispartof>Bulletin of mathematical biology, 2020-07, Vol.82 (7), p.90-90, Article 90</ispartof><rights>Society for Mathematical Biology 2020</rights><rights>Society for Mathematical Biology 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-5bdd4ac2eceef3f2bcbb115896b3a8ad05a46828e6055277e3ee1780bf1ca8663</cites><orcidid>0000-0003-3707-9798 ; 0000-0002-3886-3974 ; 0000-0002-1480-3539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-020-00759-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-020-00759-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32638174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samson, Julia E.</creatorcontrib><creatorcontrib>Ray, Dylan D.</creatorcontrib><creatorcontrib>Porfiri, Maurizio</creatorcontrib><creatorcontrib>Miller, Laura A.</creatorcontrib><creatorcontrib>Garnier, Simon</creatorcontrib><title>Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a pulsing behavior comes at a high energetic cost, and it has been proposed that coordinating the pulse of individual polyps within a colony might enhance the efficiency of fluid transport. In this paper, we test whether patterns of collective pulsing emerge in coral colonies and investigate possible interactions between polyps within a colony. We video recorded different colonies of Heteroxenia sp. in a laboratory environment. Our methodology is based on the systematic integration of a computer vision algorithm (ISOMAP) and an information-theoretic approach (transfer entropy), offering a vantage point to assess coordination in collective pulsing. Perhaps surprisingly, we did not detect any form of collective pulsing behavior in the colonies. Using artificial data sets, however, we do demonstrate that our methodology is capable of detecting even weak information transfer. The lack of a coordination is consistent with previous work on many cnidarians where coordination between actively pulsing polyps and medusa has not been observed. In our companion paper, we show that there is no fluid dynamic benefit of coordinated pulsing, supporting this result. The lack of coordination coupled with no obvious fluid dynamic benefit to grouping suggests that there may be non-fluid mechanical advantages to forming colonies, such as predator avoidance and defense.</description><subject>Alcyonacea</subject><subject>Algorithms</subject><subject>Cell Biology</subject><subject>Colonies</subject><subject>Computer vision</subject><subject>Coordination</subject><subject>Corals</subject><subject>Diffusion rate</subject><subject>Entropy</subject><subject>Fluid dynamics</subject><subject>Information theory</subject><subject>Information transfer</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Photosynthesis</subject><subject>Polyps</subject><subject>Polyps (organisms)</subject><subject>Symbionts</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3TAQha0KVG5pX6CLyhIbNgF7nB-HHYooXAmpSIWqO8txJmCU2Bc7QWLHQ_QJeZKae2mRWLAajeY7Z8Y-hHzl7IAzVh1GzgshMwYsS21RZ_CBLHgBkNUlgy2yYKyGTELOdsinGG9ZompRfyQ7AkoheZUvyNz4YUAz2XukF_MQrbum1tHf6KztaOODHuIRvdBhosunxz9Xa6Dx42qeMNBfNlrvqHYdXbreh1FPz_3lDfrwQCdPf6IO5oamURL50Fm3Jj6T7T4Z45eXukuuvp9cNmfZ-Y_TZXN8npl04ZQVbdfl2gAaxF700Jq2TW-WddkKLXXHCp2XEiSWrCigqlAg8kqytudGy7IUu2R_47sK_m7GOKnRRoPDoB36OSrIgefpK0qW0L036K2fg0vXrSlecJBVomBDmeBjDNirVbCjDg-KM_UcitqEolIoah2KgiT69mI9tyN2_yX_UkiA2AAxjdw1htfd79j-BQcWmNk</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Samson, Julia E.</creator><creator>Ray, Dylan D.</creator><creator>Porfiri, Maurizio</creator><creator>Miller, Laura A.</creator><creator>Garnier, Simon</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3707-9798</orcidid><orcidid>https://orcid.org/0000-0002-3886-3974</orcidid><orcidid>https://orcid.org/0000-0002-1480-3539</orcidid></search><sort><creationdate>20200707</creationdate><title>Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination</title><author>Samson, Julia E. ; Ray, Dylan D. ; Porfiri, Maurizio ; Miller, Laura A. ; Garnier, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-5bdd4ac2eceef3f2bcbb115896b3a8ad05a46828e6055277e3ee1780bf1ca8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alcyonacea</topic><topic>Algorithms</topic><topic>Cell Biology</topic><topic>Colonies</topic><topic>Computer vision</topic><topic>Coordination</topic><topic>Corals</topic><topic>Diffusion rate</topic><topic>Entropy</topic><topic>Fluid dynamics</topic><topic>Information theory</topic><topic>Information transfer</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Photosynthesis</topic><topic>Polyps</topic><topic>Polyps (organisms)</topic><topic>Symbionts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samson, Julia E.</creatorcontrib><creatorcontrib>Ray, Dylan D.</creatorcontrib><creatorcontrib>Porfiri, Maurizio</creatorcontrib><creatorcontrib>Miller, Laura A.</creatorcontrib><creatorcontrib>Garnier, Simon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samson, Julia E.</au><au>Ray, Dylan D.</au><au>Porfiri, Maurizio</au><au>Miller, Laura A.</au><au>Garnier, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2020-07-07</date><risdate>2020</risdate><volume>82</volume><issue>7</issue><spage>90</spage><epage>90</epage><pages>90-90</pages><artnum>90</artnum><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a pulsing behavior comes at a high energetic cost, and it has been proposed that coordinating the pulse of individual polyps within a colony might enhance the efficiency of fluid transport. In this paper, we test whether patterns of collective pulsing emerge in coral colonies and investigate possible interactions between polyps within a colony. We video recorded different colonies of Heteroxenia sp. in a laboratory environment. Our methodology is based on the systematic integration of a computer vision algorithm (ISOMAP) and an information-theoretic approach (transfer entropy), offering a vantage point to assess coordination in collective pulsing. Perhaps surprisingly, we did not detect any form of collective pulsing behavior in the colonies. Using artificial data sets, however, we do demonstrate that our methodology is capable of detecting even weak information transfer. The lack of a coordination is consistent with previous work on many cnidarians where coordination between actively pulsing polyps and medusa has not been observed. In our companion paper, we show that there is no fluid dynamic benefit of coordinated pulsing, supporting this result. The lack of coordination coupled with no obvious fluid dynamic benefit to grouping suggests that there may be non-fluid mechanical advantages to forming colonies, such as predator avoidance and defense.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32638174</pmid><doi>10.1007/s11538-020-00759-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3707-9798</orcidid><orcidid>https://orcid.org/0000-0002-3886-3974</orcidid><orcidid>https://orcid.org/0000-0002-1480-3539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2020-07, Vol.82 (7), p.90-90, Article 90
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_2421463860
source SpringerLink Journals - AutoHoldings
subjects Alcyonacea
Algorithms
Cell Biology
Colonies
Computer vision
Coordination
Corals
Diffusion rate
Entropy
Fluid dynamics
Information theory
Information transfer
Life Sciences
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Original Article
Photosynthesis
Polyps
Polyps (organisms)
Symbionts
title Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20Pulsing%20in%20Xeniid%20Corals:%20Part%20I%E2%80%94Using%20Computer%20Vision%20and%20Information%20Theory%20to%20Search%20for%20Coordination&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Samson,%20Julia%20E.&rft.date=2020-07-07&rft.volume=82&rft.issue=7&rft.spage=90&rft.epage=90&rft.pages=90-90&rft.artnum=90&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-020-00759-2&rft_dat=%3Cproquest_cross%3E2421151287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421151287&rft_id=info:pmid/32638174&rfr_iscdi=true