Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination
Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a p...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2020-07, Vol.82 (7), p.90-90, Article 90 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | 7 |
container_start_page | 90 |
container_title | Bulletin of mathematical biology |
container_volume | 82 |
creator | Samson, Julia E. Ray, Dylan D. Porfiri, Maurizio Miller, Laura A. Garnier, Simon |
description | Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a pulsing behavior comes at a high energetic cost, and it has been proposed that coordinating the pulse of individual polyps within a colony might enhance the efficiency of fluid transport. In this paper, we test whether patterns of collective pulsing emerge in coral colonies and investigate possible interactions between polyps within a colony. We video recorded different colonies of
Heteroxenia
sp. in a laboratory environment. Our methodology is based on the systematic integration of a computer vision algorithm (ISOMAP) and an information-theoretic approach (transfer entropy), offering a vantage point to assess coordination in collective pulsing. Perhaps surprisingly, we did not detect any form of collective pulsing behavior in the colonies. Using artificial data sets, however, we do demonstrate that our methodology is capable of detecting even weak information transfer. The lack of a coordination is consistent with previous work on many cnidarians where coordination between actively pulsing polyps and medusa has not been observed. In our companion paper, we show that there is no fluid dynamic benefit of coordinated pulsing, supporting this result. The lack of coordination coupled with no obvious fluid dynamic benefit to grouping suggests that there may be non-fluid mechanical advantages to forming colonies, such as predator avoidance and defense. |
doi_str_mv | 10.1007/s11538-020-00759-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421463860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421151287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-5bdd4ac2eceef3f2bcbb115896b3a8ad05a46828e6055277e3ee1780bf1ca8663</originalsourceid><addsrcrecordid>eNp9kc1O3TAQha0KVG5pX6CLyhIbNgF7nB-HHYooXAmpSIWqO8txJmCU2Bc7QWLHQ_QJeZKae2mRWLAajeY7Z8Y-hHzl7IAzVh1GzgshMwYsS21RZ_CBLHgBkNUlgy2yYKyGTELOdsinGG9ZompRfyQ7AkoheZUvyNz4YUAz2XukF_MQrbum1tHf6KztaOODHuIRvdBhosunxz9Xa6Dx42qeMNBfNlrvqHYdXbreh1FPz_3lDfrwQCdPf6IO5oamURL50Fm3Jj6T7T4Z45eXukuuvp9cNmfZ-Y_TZXN8npl04ZQVbdfl2gAaxF700Jq2TW-WddkKLXXHCp2XEiSWrCigqlAg8kqytudGy7IUu2R_47sK_m7GOKnRRoPDoB36OSrIgefpK0qW0L036K2fg0vXrSlecJBVomBDmeBjDNirVbCjDg-KM_UcitqEolIoah2KgiT69mI9tyN2_yX_UkiA2AAxjdw1htfd79j-BQcWmNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421151287</pqid></control><display><type>article</type><title>Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination</title><source>SpringerLink Journals - AutoHoldings</source><creator>Samson, Julia E. ; Ray, Dylan D. ; Porfiri, Maurizio ; Miller, Laura A. ; Garnier, Simon</creator><creatorcontrib>Samson, Julia E. ; Ray, Dylan D. ; Porfiri, Maurizio ; Miller, Laura A. ; Garnier, Simon</creatorcontrib><description>Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a pulsing behavior comes at a high energetic cost, and it has been proposed that coordinating the pulse of individual polyps within a colony might enhance the efficiency of fluid transport. In this paper, we test whether patterns of collective pulsing emerge in coral colonies and investigate possible interactions between polyps within a colony. We video recorded different colonies of
Heteroxenia
sp. in a laboratory environment. Our methodology is based on the systematic integration of a computer vision algorithm (ISOMAP) and an information-theoretic approach (transfer entropy), offering a vantage point to assess coordination in collective pulsing. Perhaps surprisingly, we did not detect any form of collective pulsing behavior in the colonies. Using artificial data sets, however, we do demonstrate that our methodology is capable of detecting even weak information transfer. The lack of a coordination is consistent with previous work on many cnidarians where coordination between actively pulsing polyps and medusa has not been observed. In our companion paper, we show that there is no fluid dynamic benefit of coordinated pulsing, supporting this result. The lack of coordination coupled with no obvious fluid dynamic benefit to grouping suggests that there may be non-fluid mechanical advantages to forming colonies, such as predator avoidance and defense.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-020-00759-2</identifier><identifier>PMID: 32638174</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alcyonacea ; Algorithms ; Cell Biology ; Colonies ; Computer vision ; Coordination ; Corals ; Diffusion rate ; Entropy ; Fluid dynamics ; Information theory ; Information transfer ; Life Sciences ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Original Article ; Photosynthesis ; Polyps ; Polyps (organisms) ; Symbionts</subject><ispartof>Bulletin of mathematical biology, 2020-07, Vol.82 (7), p.90-90, Article 90</ispartof><rights>Society for Mathematical Biology 2020</rights><rights>Society for Mathematical Biology 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-5bdd4ac2eceef3f2bcbb115896b3a8ad05a46828e6055277e3ee1780bf1ca8663</cites><orcidid>0000-0003-3707-9798 ; 0000-0002-3886-3974 ; 0000-0002-1480-3539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-020-00759-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-020-00759-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32638174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samson, Julia E.</creatorcontrib><creatorcontrib>Ray, Dylan D.</creatorcontrib><creatorcontrib>Porfiri, Maurizio</creatorcontrib><creatorcontrib>Miller, Laura A.</creatorcontrib><creatorcontrib>Garnier, Simon</creatorcontrib><title>Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a pulsing behavior comes at a high energetic cost, and it has been proposed that coordinating the pulse of individual polyps within a colony might enhance the efficiency of fluid transport. In this paper, we test whether patterns of collective pulsing emerge in coral colonies and investigate possible interactions between polyps within a colony. We video recorded different colonies of
Heteroxenia
sp. in a laboratory environment. Our methodology is based on the systematic integration of a computer vision algorithm (ISOMAP) and an information-theoretic approach (transfer entropy), offering a vantage point to assess coordination in collective pulsing. Perhaps surprisingly, we did not detect any form of collective pulsing behavior in the colonies. Using artificial data sets, however, we do demonstrate that our methodology is capable of detecting even weak information transfer. The lack of a coordination is consistent with previous work on many cnidarians where coordination between actively pulsing polyps and medusa has not been observed. In our companion paper, we show that there is no fluid dynamic benefit of coordinated pulsing, supporting this result. The lack of coordination coupled with no obvious fluid dynamic benefit to grouping suggests that there may be non-fluid mechanical advantages to forming colonies, such as predator avoidance and defense.</description><subject>Alcyonacea</subject><subject>Algorithms</subject><subject>Cell Biology</subject><subject>Colonies</subject><subject>Computer vision</subject><subject>Coordination</subject><subject>Corals</subject><subject>Diffusion rate</subject><subject>Entropy</subject><subject>Fluid dynamics</subject><subject>Information theory</subject><subject>Information transfer</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Photosynthesis</subject><subject>Polyps</subject><subject>Polyps (organisms)</subject><subject>Symbionts</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3TAQha0KVG5pX6CLyhIbNgF7nB-HHYooXAmpSIWqO8txJmCU2Bc7QWLHQ_QJeZKae2mRWLAajeY7Z8Y-hHzl7IAzVh1GzgshMwYsS21RZ_CBLHgBkNUlgy2yYKyGTELOdsinGG9ZompRfyQ7AkoheZUvyNz4YUAz2XukF_MQrbum1tHf6KztaOODHuIRvdBhosunxz9Xa6Dx42qeMNBfNlrvqHYdXbreh1FPz_3lDfrwQCdPf6IO5oamURL50Fm3Jj6T7T4Z45eXukuuvp9cNmfZ-Y_TZXN8npl04ZQVbdfl2gAaxF700Jq2TW-WddkKLXXHCp2XEiSWrCigqlAg8kqytudGy7IUu2R_47sK_m7GOKnRRoPDoB36OSrIgefpK0qW0L036K2fg0vXrSlecJBVomBDmeBjDNirVbCjDg-KM_UcitqEolIoah2KgiT69mI9tyN2_yX_UkiA2AAxjdw1htfd79j-BQcWmNk</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Samson, Julia E.</creator><creator>Ray, Dylan D.</creator><creator>Porfiri, Maurizio</creator><creator>Miller, Laura A.</creator><creator>Garnier, Simon</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3707-9798</orcidid><orcidid>https://orcid.org/0000-0002-3886-3974</orcidid><orcidid>https://orcid.org/0000-0002-1480-3539</orcidid></search><sort><creationdate>20200707</creationdate><title>Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination</title><author>Samson, Julia E. ; Ray, Dylan D. ; Porfiri, Maurizio ; Miller, Laura A. ; Garnier, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-5bdd4ac2eceef3f2bcbb115896b3a8ad05a46828e6055277e3ee1780bf1ca8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alcyonacea</topic><topic>Algorithms</topic><topic>Cell Biology</topic><topic>Colonies</topic><topic>Computer vision</topic><topic>Coordination</topic><topic>Corals</topic><topic>Diffusion rate</topic><topic>Entropy</topic><topic>Fluid dynamics</topic><topic>Information theory</topic><topic>Information transfer</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Photosynthesis</topic><topic>Polyps</topic><topic>Polyps (organisms)</topic><topic>Symbionts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samson, Julia E.</creatorcontrib><creatorcontrib>Ray, Dylan D.</creatorcontrib><creatorcontrib>Porfiri, Maurizio</creatorcontrib><creatorcontrib>Miller, Laura A.</creatorcontrib><creatorcontrib>Garnier, Simon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samson, Julia E.</au><au>Ray, Dylan D.</au><au>Porfiri, Maurizio</au><au>Miller, Laura A.</au><au>Garnier, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2020-07-07</date><risdate>2020</risdate><volume>82</volume><issue>7</issue><spage>90</spage><epage>90</epage><pages>90-90</pages><artnum>90</artnum><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a pulsing behavior comes at a high energetic cost, and it has been proposed that coordinating the pulse of individual polyps within a colony might enhance the efficiency of fluid transport. In this paper, we test whether patterns of collective pulsing emerge in coral colonies and investigate possible interactions between polyps within a colony. We video recorded different colonies of
Heteroxenia
sp. in a laboratory environment. Our methodology is based on the systematic integration of a computer vision algorithm (ISOMAP) and an information-theoretic approach (transfer entropy), offering a vantage point to assess coordination in collective pulsing. Perhaps surprisingly, we did not detect any form of collective pulsing behavior in the colonies. Using artificial data sets, however, we do demonstrate that our methodology is capable of detecting even weak information transfer. The lack of a coordination is consistent with previous work on many cnidarians where coordination between actively pulsing polyps and medusa has not been observed. In our companion paper, we show that there is no fluid dynamic benefit of coordinated pulsing, supporting this result. The lack of coordination coupled with no obvious fluid dynamic benefit to grouping suggests that there may be non-fluid mechanical advantages to forming colonies, such as predator avoidance and defense.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32638174</pmid><doi>10.1007/s11538-020-00759-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3707-9798</orcidid><orcidid>https://orcid.org/0000-0002-3886-3974</orcidid><orcidid>https://orcid.org/0000-0002-1480-3539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2020-07, Vol.82 (7), p.90-90, Article 90 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_2421463860 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alcyonacea Algorithms Cell Biology Colonies Computer vision Coordination Corals Diffusion rate Entropy Fluid dynamics Information theory Information transfer Life Sciences Mathematical and Computational Biology Mathematics Mathematics and Statistics Original Article Photosynthesis Polyps Polyps (organisms) Symbionts |
title | Collective Pulsing in Xeniid Corals: Part I—Using Computer Vision and Information Theory to Search for Coordination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20Pulsing%20in%20Xeniid%20Corals:%20Part%20I%E2%80%94Using%20Computer%20Vision%20and%20Information%20Theory%20to%20Search%20for%20Coordination&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Samson,%20Julia%20E.&rft.date=2020-07-07&rft.volume=82&rft.issue=7&rft.spage=90&rft.epage=90&rft.pages=90-90&rft.artnum=90&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-020-00759-2&rft_dat=%3Cproquest_cross%3E2421151287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421151287&rft_id=info:pmid/32638174&rfr_iscdi=true |