Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types

Abstract Motivation Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-12, Vol.36 (20), p.5037-5044
Hauptverfasser: Guerrero-Gimenez, M E, Fernandez-Muñoz, J M, Lang, B J, Holton, K M, Ciocca, D R, Catania, C A, Zoppino, F C M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5044
container_issue 20
container_start_page 5037
container_title Bioinformatics
container_volume 36
creator Guerrero-Gimenez, M E
Fernandez-Muñoz, J M
Lang, B J
Holton, K M
Ciocca, D R
Catania, C A
Zoppino, F C M
description Abstract Motivation Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival. Results To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found. Availability and implementation The open-source R package is available on www.github.com/harpomaxx/galgo. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btaa619
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421463690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa619</oup_id><sourcerecordid>2421463690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9bff87ed49004fe3f721fc7b38eec8ca649cde9eb31d9d18149d24d95da337103</originalsourceid><addsrcrecordid>eNqNkc1O3TAQha0KVCj0FZCXbFLs2DeJu6sQpZWQ2MA68s-4GCVx6rFBPAsvW1_ubSV2Xc1ZfGfOaA4hZ5x94UyJCxNiWHxMs87B4oXJWndcfSDHXHasadlGHVQtur6RAxNH5BPiI2MbLqX8SI5E24mBMXVMXq_19Ct-pZqa0ETzCDaHJ6DwFKeSQ1x0eqEzZN08QEkBaxgNDpYcfACkKZqCmeakF7QprDnOFbCTRtwCCWlV0QadwdHnkB_oWu-tdhpLtnEGqm2KiHQuUw7rBNTqxUKi-WUFPCWHXk8In_fzhNx_v7q7_NHc3F7_vPx201ixEblRxvuhBycVY9KD8H3Lve2NGADsYHUnlXWgwAjulOMDl8q10qmN00L0nIkTcr7bu6b4uwDmcQ5oYZr0ArHg2Mq2flV0aot2O_Tt7AR-XFOY65NGzsZtMeP7YsZ9MdV4ts8oZgb3z_a3iQrwHRDL-r9L_wBLcadU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421463690</pqid></control><display><type>article</type><title>Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types</title><source>Oxford Journals Open Access Collection</source><creator>Guerrero-Gimenez, M E ; Fernandez-Muñoz, J M ; Lang, B J ; Holton, K M ; Ciocca, D R ; Catania, C A ; Zoppino, F C M</creator><creatorcontrib>Guerrero-Gimenez, M E ; Fernandez-Muñoz, J M ; Lang, B J ; Holton, K M ; Ciocca, D R ; Catania, C A ; Zoppino, F C M</creatorcontrib><description>Abstract Motivation Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival. Results To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found. Availability and implementation The open-source R package is available on www.github.com/harpomaxx/galgo. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa619</identifier><identifier>PMID: 32638009</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Breast Neoplasms ; Computational Biology ; Gene Expression Profiling ; Heuristics ; Humans ; Transcriptome</subject><ispartof>Bioinformatics, 2020-12, Vol.36 (20), p.5037-5044</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9bff87ed49004fe3f721fc7b38eec8ca649cde9eb31d9d18149d24d95da337103</citedby><cites>FETCH-LOGICAL-c353t-9bff87ed49004fe3f721fc7b38eec8ca649cde9eb31d9d18149d24d95da337103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btaa619$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32638009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerrero-Gimenez, M E</creatorcontrib><creatorcontrib>Fernandez-Muñoz, J M</creatorcontrib><creatorcontrib>Lang, B J</creatorcontrib><creatorcontrib>Holton, K M</creatorcontrib><creatorcontrib>Ciocca, D R</creatorcontrib><creatorcontrib>Catania, C A</creatorcontrib><creatorcontrib>Zoppino, F C M</creatorcontrib><title>Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival. Results To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found. Availability and implementation The open-source R package is available on www.github.com/harpomaxx/galgo. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Breast Neoplasms</subject><subject>Computational Biology</subject><subject>Gene Expression Profiling</subject><subject>Heuristics</subject><subject>Humans</subject><subject>Transcriptome</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3TAQha0KVCj0FZCXbFLs2DeJu6sQpZWQ2MA68s-4GCVx6rFBPAsvW1_ubSV2Xc1ZfGfOaA4hZ5x94UyJCxNiWHxMs87B4oXJWndcfSDHXHasadlGHVQtur6RAxNH5BPiI2MbLqX8SI5E24mBMXVMXq_19Ct-pZqa0ETzCDaHJ6DwFKeSQ1x0eqEzZN08QEkBaxgNDpYcfACkKZqCmeakF7QprDnOFbCTRtwCCWlV0QadwdHnkB_oWu-tdhpLtnEGqm2KiHQuUw7rBNTqxUKi-WUFPCWHXk8In_fzhNx_v7q7_NHc3F7_vPx201ixEblRxvuhBycVY9KD8H3Lve2NGADsYHUnlXWgwAjulOMDl8q10qmN00L0nIkTcr7bu6b4uwDmcQ5oYZr0ArHg2Mq2flV0aot2O_Tt7AR-XFOY65NGzsZtMeP7YsZ9MdV4ts8oZgb3z_a3iQrwHRDL-r9L_wBLcadU</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Guerrero-Gimenez, M E</creator><creator>Fernandez-Muñoz, J M</creator><creator>Lang, B J</creator><creator>Holton, K M</creator><creator>Ciocca, D R</creator><creator>Catania, C A</creator><creator>Zoppino, F C M</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20201222</creationdate><title>Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types</title><author>Guerrero-Gimenez, M E ; Fernandez-Muñoz, J M ; Lang, B J ; Holton, K M ; Ciocca, D R ; Catania, C A ; Zoppino, F C M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9bff87ed49004fe3f721fc7b38eec8ca649cde9eb31d9d18149d24d95da337103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Breast Neoplasms</topic><topic>Computational Biology</topic><topic>Gene Expression Profiling</topic><topic>Heuristics</topic><topic>Humans</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrero-Gimenez, M E</creatorcontrib><creatorcontrib>Fernandez-Muñoz, J M</creatorcontrib><creatorcontrib>Lang, B J</creatorcontrib><creatorcontrib>Holton, K M</creatorcontrib><creatorcontrib>Ciocca, D R</creatorcontrib><creatorcontrib>Catania, C A</creatorcontrib><creatorcontrib>Zoppino, F C M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guerrero-Gimenez, M E</au><au>Fernandez-Muñoz, J M</au><au>Lang, B J</au><au>Holton, K M</au><au>Ciocca, D R</au><au>Catania, C A</au><au>Zoppino, F C M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-12-22</date><risdate>2020</risdate><volume>36</volume><issue>20</issue><spage>5037</spage><epage>5044</epage><pages>5037-5044</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival. Results To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found. Availability and implementation The open-source R package is available on www.github.com/harpomaxx/galgo. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32638009</pmid><doi>10.1093/bioinformatics/btaa619</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-12, Vol.36 (20), p.5037-5044
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2421463690
source Oxford Journals Open Access Collection
subjects Breast Neoplasms
Computational Biology
Gene Expression Profiling
Heuristics
Humans
Transcriptome
title Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galgo:%20a%20bi-objective%20evolutionary%20meta-heuristic%20identifies%20robust%20transcriptomic%20classifiers%20associated%20with%20patient%20outcome%20across%20multiple%20cancer%20types&rft.jtitle=Bioinformatics&rft.au=Guerrero-Gimenez,%20M%20E&rft.date=2020-12-22&rft.volume=36&rft.issue=20&rft.spage=5037&rft.epage=5044&rft.pages=5037-5044&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa619&rft_dat=%3Cproquest_TOX%3E2421463690%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421463690&rft_id=info:pmid/32638009&rft_oup_id=10.1093/bioinformatics/btaa619&rfr_iscdi=true