Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types
Abstract Motivation Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to dat...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-12, Vol.36 (20), p.5037-5044 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5044 |
---|---|
container_issue | 20 |
container_start_page | 5037 |
container_title | Bioinformatics |
container_volume | 36 |
creator | Guerrero-Gimenez, M E Fernandez-Muñoz, J M Lang, B J Holton, K M Ciocca, D R Catania, C A Zoppino, F C M |
description | Abstract
Motivation
Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival.
Results
To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found.
Availability and implementation
The open-source R package is available on www.github.com/harpomaxx/galgo.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btaa619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421463690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa619</oup_id><sourcerecordid>2421463690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9bff87ed49004fe3f721fc7b38eec8ca649cde9eb31d9d18149d24d95da337103</originalsourceid><addsrcrecordid>eNqNkc1O3TAQha0KVCj0FZCXbFLs2DeJu6sQpZWQ2MA68s-4GCVx6rFBPAsvW1_ubSV2Xc1ZfGfOaA4hZ5x94UyJCxNiWHxMs87B4oXJWndcfSDHXHasadlGHVQtur6RAxNH5BPiI2MbLqX8SI5E24mBMXVMXq_19Ct-pZqa0ETzCDaHJ6DwFKeSQ1x0eqEzZN08QEkBaxgNDpYcfACkKZqCmeakF7QprDnOFbCTRtwCCWlV0QadwdHnkB_oWu-tdhpLtnEGqm2KiHQuUw7rBNTqxUKi-WUFPCWHXk8In_fzhNx_v7q7_NHc3F7_vPx201ixEblRxvuhBycVY9KD8H3Lve2NGADsYHUnlXWgwAjulOMDl8q10qmN00L0nIkTcr7bu6b4uwDmcQ5oYZr0ArHg2Mq2flV0aot2O_Tt7AR-XFOY65NGzsZtMeP7YsZ9MdV4ts8oZgb3z_a3iQrwHRDL-r9L_wBLcadU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421463690</pqid></control><display><type>article</type><title>Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types</title><source>Oxford Journals Open Access Collection</source><creator>Guerrero-Gimenez, M E ; Fernandez-Muñoz, J M ; Lang, B J ; Holton, K M ; Ciocca, D R ; Catania, C A ; Zoppino, F C M</creator><creatorcontrib>Guerrero-Gimenez, M E ; Fernandez-Muñoz, J M ; Lang, B J ; Holton, K M ; Ciocca, D R ; Catania, C A ; Zoppino, F C M</creatorcontrib><description>Abstract
Motivation
Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival.
Results
To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found.
Availability and implementation
The open-source R package is available on www.github.com/harpomaxx/galgo.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa619</identifier><identifier>PMID: 32638009</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Breast Neoplasms ; Computational Biology ; Gene Expression Profiling ; Heuristics ; Humans ; Transcriptome</subject><ispartof>Bioinformatics, 2020-12, Vol.36 (20), p.5037-5044</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9bff87ed49004fe3f721fc7b38eec8ca649cde9eb31d9d18149d24d95da337103</citedby><cites>FETCH-LOGICAL-c353t-9bff87ed49004fe3f721fc7b38eec8ca649cde9eb31d9d18149d24d95da337103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btaa619$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32638009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerrero-Gimenez, M E</creatorcontrib><creatorcontrib>Fernandez-Muñoz, J M</creatorcontrib><creatorcontrib>Lang, B J</creatorcontrib><creatorcontrib>Holton, K M</creatorcontrib><creatorcontrib>Ciocca, D R</creatorcontrib><creatorcontrib>Catania, C A</creatorcontrib><creatorcontrib>Zoppino, F C M</creatorcontrib><title>Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival.
Results
To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found.
Availability and implementation
The open-source R package is available on www.github.com/harpomaxx/galgo.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Breast Neoplasms</subject><subject>Computational Biology</subject><subject>Gene Expression Profiling</subject><subject>Heuristics</subject><subject>Humans</subject><subject>Transcriptome</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3TAQha0KVCj0FZCXbFLs2DeJu6sQpZWQ2MA68s-4GCVx6rFBPAsvW1_ubSV2Xc1ZfGfOaA4hZ5x94UyJCxNiWHxMs87B4oXJWndcfSDHXHasadlGHVQtur6RAxNH5BPiI2MbLqX8SI5E24mBMXVMXq_19Ct-pZqa0ETzCDaHJ6DwFKeSQ1x0eqEzZN08QEkBaxgNDpYcfACkKZqCmeakF7QprDnOFbCTRtwCCWlV0QadwdHnkB_oWu-tdhpLtnEGqm2KiHQuUw7rBNTqxUKi-WUFPCWHXk8In_fzhNx_v7q7_NHc3F7_vPx201ixEblRxvuhBycVY9KD8H3Lve2NGADsYHUnlXWgwAjulOMDl8q10qmN00L0nIkTcr7bu6b4uwDmcQ5oYZr0ArHg2Mq2flV0aot2O_Tt7AR-XFOY65NGzsZtMeP7YsZ9MdV4ts8oZgb3z_a3iQrwHRDL-r9L_wBLcadU</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Guerrero-Gimenez, M E</creator><creator>Fernandez-Muñoz, J M</creator><creator>Lang, B J</creator><creator>Holton, K M</creator><creator>Ciocca, D R</creator><creator>Catania, C A</creator><creator>Zoppino, F C M</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20201222</creationdate><title>Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types</title><author>Guerrero-Gimenez, M E ; Fernandez-Muñoz, J M ; Lang, B J ; Holton, K M ; Ciocca, D R ; Catania, C A ; Zoppino, F C M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9bff87ed49004fe3f721fc7b38eec8ca649cde9eb31d9d18149d24d95da337103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Breast Neoplasms</topic><topic>Computational Biology</topic><topic>Gene Expression Profiling</topic><topic>Heuristics</topic><topic>Humans</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrero-Gimenez, M E</creatorcontrib><creatorcontrib>Fernandez-Muñoz, J M</creatorcontrib><creatorcontrib>Lang, B J</creatorcontrib><creatorcontrib>Holton, K M</creatorcontrib><creatorcontrib>Ciocca, D R</creatorcontrib><creatorcontrib>Catania, C A</creatorcontrib><creatorcontrib>Zoppino, F C M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guerrero-Gimenez, M E</au><au>Fernandez-Muñoz, J M</au><au>Lang, B J</au><au>Holton, K M</au><au>Ciocca, D R</au><au>Catania, C A</au><au>Zoppino, F C M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-12-22</date><risdate>2020</risdate><volume>36</volume><issue>20</issue><spage>5037</spage><epage>5044</epage><pages>5037-5044</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival.
Results
To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found.
Availability and implementation
The open-source R package is available on www.github.com/harpomaxx/galgo.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32638009</pmid><doi>10.1093/bioinformatics/btaa619</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2020-12, Vol.36 (20), p.5037-5044 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_2421463690 |
source | Oxford Journals Open Access Collection |
subjects | Breast Neoplasms Computational Biology Gene Expression Profiling Heuristics Humans Transcriptome |
title | Galgo: a bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galgo:%20a%20bi-objective%20evolutionary%20meta-heuristic%20identifies%20robust%20transcriptomic%20classifiers%20associated%20with%20patient%20outcome%20across%20multiple%20cancer%20types&rft.jtitle=Bioinformatics&rft.au=Guerrero-Gimenez,%20M%20E&rft.date=2020-12-22&rft.volume=36&rft.issue=20&rft.spage=5037&rft.epage=5044&rft.pages=5037-5044&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa619&rft_dat=%3Cproquest_TOX%3E2421463690%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421463690&rft_id=info:pmid/32638009&rft_oup_id=10.1093/bioinformatics/btaa619&rfr_iscdi=true |