Impact of mRNA chemistry and manufacturing process on innate immune activation
Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein e...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-06, Vol.6 (26), p.eaaz6893-eaaz6893, Article 6893 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eaaz6893 |
---|---|
container_issue | 26 |
container_start_page | eaaz6893 |
container_title | Science advances |
container_volume | 6 |
creator | Nelson, Jennifer Sorensen, Elizabeth W. Mintri, Shrutika Rabideau, Amy E. Zheng, Wei Besin, Gilles Khatwani, Nikhil Su, Stephen Miracco, Edward J. Issa, William J. Hoge, Stephen Stanton, Matthew G. Joyal, John L. |
description | Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1 m Psi), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1 m Psi made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA. |
doi_str_mv | 10.1126/sciadv.aaz6893 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421461342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421461342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-d31bdc9335d99c61d42819b8fe48fa1faf66bf9f65de331398cdf4569e3a59f03</originalsourceid><addsrcrecordid>eNqNkc1rVDEUxYMotrTdupQsBZnx5bPJRiiD1UJpQXQd8pKbNjIvGZO8kfavN3XGoe5cJXB_5-TmHITekGFJCJUfqovWb5fWPkql2Qt0TNm5WFDB1ctn9yN0VuuPYRgIl1IQ_RodMSr7VKtjdHM1baxrOAc8fb25wO4eplhbecA2eTzZNIc-nktMd3hTsoNacU44pmQb4DhNcwLcibi1LeZ0il4Fu65wtj9P0PfLT99WXxbXt5-vVhfXC8eFbAvPyOidZkx4rZ0knlNF9KgCcBUsCTZIOQYdpPDAGGFaOR-6UgOzQoeBnaCPO9_NPE7gHaRW7NpsSpxseTDZRvPvJMV7c5e35pwRLojqBu_2BiX_nKE207_tYL22CfJcDeW0x0UYpx1d7lBXcq0FwuEZMpinHsyuB7PvoQvePl_ugP9NvQNqB_yCMYeuhuTggPWmBGdi4OSpM7qK7U-0qzyn1qXv_1_KfgO_bKh9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421461342</pqid></control><display><type>article</type><title>Impact of mRNA chemistry and manufacturing process on innate immune activation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nelson, Jennifer ; Sorensen, Elizabeth W. ; Mintri, Shrutika ; Rabideau, Amy E. ; Zheng, Wei ; Besin, Gilles ; Khatwani, Nikhil ; Su, Stephen ; Miracco, Edward J. ; Issa, William J. ; Hoge, Stephen ; Stanton, Matthew G. ; Joyal, John L.</creator><creatorcontrib>Nelson, Jennifer ; Sorensen, Elizabeth W. ; Mintri, Shrutika ; Rabideau, Amy E. ; Zheng, Wei ; Besin, Gilles ; Khatwani, Nikhil ; Su, Stephen ; Miracco, Edward J. ; Issa, William J. ; Hoge, Stephen ; Stanton, Matthew G. ; Joyal, John L.</creatorcontrib><description>Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1 m Psi), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1 m Psi made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz6893</identifier><identifier>PMID: 32637598</identifier><language>eng</language><publisher>WASHINGTON: Amer Assoc Advancement Science</publisher><subject>Health and Medicine ; Immunology ; Multidisciplinary Sciences ; SciAdv r-articles ; Science & Technology ; Science & Technology - Other Topics</subject><ispartof>Science advances, 2020-06, Vol.6 (26), p.eaaz6893-eaaz6893, Article 6893</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>200</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000543504100012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c456t-d31bdc9335d99c61d42819b8fe48fa1faf66bf9f65de331398cdf4569e3a59f03</citedby><cites>FETCH-LOGICAL-c456t-d31bdc9335d99c61d42819b8fe48fa1faf66bf9f65de331398cdf4569e3a59f03</cites><orcidid>0000-0001-7964-4615 ; 0000-0002-9196-2795 ; 0000-0001-8632-6658 ; 0000-0002-0223-6944 ; 0000-0003-3364-2942 ; 0000-0002-6222-6617 ; 0000-0002-3433-6050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314518/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314518/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2107,27902,27903,53768,53770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32637598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nelson, Jennifer</creatorcontrib><creatorcontrib>Sorensen, Elizabeth W.</creatorcontrib><creatorcontrib>Mintri, Shrutika</creatorcontrib><creatorcontrib>Rabideau, Amy E.</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Besin, Gilles</creatorcontrib><creatorcontrib>Khatwani, Nikhil</creatorcontrib><creatorcontrib>Su, Stephen</creatorcontrib><creatorcontrib>Miracco, Edward J.</creatorcontrib><creatorcontrib>Issa, William J.</creatorcontrib><creatorcontrib>Hoge, Stephen</creatorcontrib><creatorcontrib>Stanton, Matthew G.</creatorcontrib><creatorcontrib>Joyal, John L.</creatorcontrib><title>Impact of mRNA chemistry and manufacturing process on innate immune activation</title><title>Science advances</title><addtitle>SCI ADV</addtitle><addtitle>Sci Adv</addtitle><description>Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1 m Psi), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1 m Psi made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA.</description><subject>Health and Medicine</subject><subject>Immunology</subject><subject>Multidisciplinary Sciences</subject><subject>SciAdv r-articles</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1rVDEUxYMotrTdupQsBZnx5bPJRiiD1UJpQXQd8pKbNjIvGZO8kfavN3XGoe5cJXB_5-TmHITekGFJCJUfqovWb5fWPkql2Qt0TNm5WFDB1ctn9yN0VuuPYRgIl1IQ_RodMSr7VKtjdHM1baxrOAc8fb25wO4eplhbecA2eTzZNIc-nktMd3hTsoNacU44pmQb4DhNcwLcibi1LeZ0il4Fu65wtj9P0PfLT99WXxbXt5-vVhfXC8eFbAvPyOidZkx4rZ0knlNF9KgCcBUsCTZIOQYdpPDAGGFaOR-6UgOzQoeBnaCPO9_NPE7gHaRW7NpsSpxseTDZRvPvJMV7c5e35pwRLojqBu_2BiX_nKE207_tYL22CfJcDeW0x0UYpx1d7lBXcq0FwuEZMpinHsyuB7PvoQvePl_ugP9NvQNqB_yCMYeuhuTggPWmBGdi4OSpM7qK7U-0qzyn1qXv_1_KfgO_bKh9</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Nelson, Jennifer</creator><creator>Sorensen, Elizabeth W.</creator><creator>Mintri, Shrutika</creator><creator>Rabideau, Amy E.</creator><creator>Zheng, Wei</creator><creator>Besin, Gilles</creator><creator>Khatwani, Nikhil</creator><creator>Su, Stephen</creator><creator>Miracco, Edward J.</creator><creator>Issa, William J.</creator><creator>Hoge, Stephen</creator><creator>Stanton, Matthew G.</creator><creator>Joyal, John L.</creator><general>Amer Assoc Advancement Science</general><general>American Association for the Advancement of Science</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7964-4615</orcidid><orcidid>https://orcid.org/0000-0002-9196-2795</orcidid><orcidid>https://orcid.org/0000-0001-8632-6658</orcidid><orcidid>https://orcid.org/0000-0002-0223-6944</orcidid><orcidid>https://orcid.org/0000-0003-3364-2942</orcidid><orcidid>https://orcid.org/0000-0002-6222-6617</orcidid><orcidid>https://orcid.org/0000-0002-3433-6050</orcidid></search><sort><creationdate>20200601</creationdate><title>Impact of mRNA chemistry and manufacturing process on innate immune activation</title><author>Nelson, Jennifer ; Sorensen, Elizabeth W. ; Mintri, Shrutika ; Rabideau, Amy E. ; Zheng, Wei ; Besin, Gilles ; Khatwani, Nikhil ; Su, Stephen ; Miracco, Edward J. ; Issa, William J. ; Hoge, Stephen ; Stanton, Matthew G. ; Joyal, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-d31bdc9335d99c61d42819b8fe48fa1faf66bf9f65de331398cdf4569e3a59f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Health and Medicine</topic><topic>Immunology</topic><topic>Multidisciplinary Sciences</topic><topic>SciAdv r-articles</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, Jennifer</creatorcontrib><creatorcontrib>Sorensen, Elizabeth W.</creatorcontrib><creatorcontrib>Mintri, Shrutika</creatorcontrib><creatorcontrib>Rabideau, Amy E.</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Besin, Gilles</creatorcontrib><creatorcontrib>Khatwani, Nikhil</creatorcontrib><creatorcontrib>Su, Stephen</creatorcontrib><creatorcontrib>Miracco, Edward J.</creatorcontrib><creatorcontrib>Issa, William J.</creatorcontrib><creatorcontrib>Hoge, Stephen</creatorcontrib><creatorcontrib>Stanton, Matthew G.</creatorcontrib><creatorcontrib>Joyal, John L.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nelson, Jennifer</au><au>Sorensen, Elizabeth W.</au><au>Mintri, Shrutika</au><au>Rabideau, Amy E.</au><au>Zheng, Wei</au><au>Besin, Gilles</au><au>Khatwani, Nikhil</au><au>Su, Stephen</au><au>Miracco, Edward J.</au><au>Issa, William J.</au><au>Hoge, Stephen</au><au>Stanton, Matthew G.</au><au>Joyal, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of mRNA chemistry and manufacturing process on innate immune activation</atitle><jtitle>Science advances</jtitle><stitle>SCI ADV</stitle><addtitle>Sci Adv</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>6</volume><issue>26</issue><spage>eaaz6893</spage><epage>eaaz6893</epage><pages>eaaz6893-eaaz6893</pages><artnum>6893</artnum><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1 m Psi), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1 m Psi made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA.</abstract><cop>WASHINGTON</cop><pub>Amer Assoc Advancement Science</pub><pmid>32637598</pmid><doi>10.1126/sciadv.aaz6893</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7964-4615</orcidid><orcidid>https://orcid.org/0000-0002-9196-2795</orcidid><orcidid>https://orcid.org/0000-0001-8632-6658</orcidid><orcidid>https://orcid.org/0000-0002-0223-6944</orcidid><orcidid>https://orcid.org/0000-0003-3364-2942</orcidid><orcidid>https://orcid.org/0000-0002-6222-6617</orcidid><orcidid>https://orcid.org/0000-0002-3433-6050</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-06, Vol.6 (26), p.eaaz6893-eaaz6893, Article 6893 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_2421461342 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Health and Medicine Immunology Multidisciplinary Sciences SciAdv r-articles Science & Technology Science & Technology - Other Topics |
title | Impact of mRNA chemistry and manufacturing process on innate immune activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20mRNA%20chemistry%20and%20manufacturing%20process%20on%20innate%20immune%20activation&rft.jtitle=Science%20advances&rft.au=Nelson,%20Jennifer&rft.date=2020-06-01&rft.volume=6&rft.issue=26&rft.spage=eaaz6893&rft.epage=eaaz6893&rft.pages=eaaz6893-eaaz6893&rft.artnum=6893&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz6893&rft_dat=%3Cproquest_pubme%3E2421461342%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421461342&rft_id=info:pmid/32637598&rfr_iscdi=true |