Impact of mRNA chemistry and manufacturing process on innate immune activation

Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-06, Vol.6 (26), p.eaaz6893-eaaz6893, Article 6893
Hauptverfasser: Nelson, Jennifer, Sorensen, Elizabeth W., Mintri, Shrutika, Rabideau, Amy E., Zheng, Wei, Besin, Gilles, Khatwani, Nikhil, Su, Stephen, Miracco, Edward J., Issa, William J., Hoge, Stephen, Stanton, Matthew G., Joyal, John L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eaaz6893
container_issue 26
container_start_page eaaz6893
container_title Science advances
container_volume 6
creator Nelson, Jennifer
Sorensen, Elizabeth W.
Mintri, Shrutika
Rabideau, Amy E.
Zheng, Wei
Besin, Gilles
Khatwani, Nikhil
Su, Stephen
Miracco, Edward J.
Issa, William J.
Hoge, Stephen
Stanton, Matthew G.
Joyal, John L.
description Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1 m Psi), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1 m Psi made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA.
doi_str_mv 10.1126/sciadv.aaz6893
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421461342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421461342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-d31bdc9335d99c61d42819b8fe48fa1faf66bf9f65de331398cdf4569e3a59f03</originalsourceid><addsrcrecordid>eNqNkc1rVDEUxYMotrTdupQsBZnx5bPJRiiD1UJpQXQd8pKbNjIvGZO8kfavN3XGoe5cJXB_5-TmHITekGFJCJUfqovWb5fWPkql2Qt0TNm5WFDB1ctn9yN0VuuPYRgIl1IQ_RodMSr7VKtjdHM1baxrOAc8fb25wO4eplhbecA2eTzZNIc-nktMd3hTsoNacU44pmQb4DhNcwLcibi1LeZ0il4Fu65wtj9P0PfLT99WXxbXt5-vVhfXC8eFbAvPyOidZkx4rZ0knlNF9KgCcBUsCTZIOQYdpPDAGGFaOR-6UgOzQoeBnaCPO9_NPE7gHaRW7NpsSpxseTDZRvPvJMV7c5e35pwRLojqBu_2BiX_nKE207_tYL22CfJcDeW0x0UYpx1d7lBXcq0FwuEZMpinHsyuB7PvoQvePl_ugP9NvQNqB_yCMYeuhuTggPWmBGdi4OSpM7qK7U-0qzyn1qXv_1_KfgO_bKh9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421461342</pqid></control><display><type>article</type><title>Impact of mRNA chemistry and manufacturing process on innate immune activation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nelson, Jennifer ; Sorensen, Elizabeth W. ; Mintri, Shrutika ; Rabideau, Amy E. ; Zheng, Wei ; Besin, Gilles ; Khatwani, Nikhil ; Su, Stephen ; Miracco, Edward J. ; Issa, William J. ; Hoge, Stephen ; Stanton, Matthew G. ; Joyal, John L.</creator><creatorcontrib>Nelson, Jennifer ; Sorensen, Elizabeth W. ; Mintri, Shrutika ; Rabideau, Amy E. ; Zheng, Wei ; Besin, Gilles ; Khatwani, Nikhil ; Su, Stephen ; Miracco, Edward J. ; Issa, William J. ; Hoge, Stephen ; Stanton, Matthew G. ; Joyal, John L.</creatorcontrib><description>Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1 m Psi), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1 m Psi made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz6893</identifier><identifier>PMID: 32637598</identifier><language>eng</language><publisher>WASHINGTON: Amer Assoc Advancement Science</publisher><subject>Health and Medicine ; Immunology ; Multidisciplinary Sciences ; SciAdv r-articles ; Science &amp; Technology ; Science &amp; Technology - Other Topics</subject><ispartof>Science advances, 2020-06, Vol.6 (26), p.eaaz6893-eaaz6893, Article 6893</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>200</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000543504100012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c456t-d31bdc9335d99c61d42819b8fe48fa1faf66bf9f65de331398cdf4569e3a59f03</citedby><cites>FETCH-LOGICAL-c456t-d31bdc9335d99c61d42819b8fe48fa1faf66bf9f65de331398cdf4569e3a59f03</cites><orcidid>0000-0001-7964-4615 ; 0000-0002-9196-2795 ; 0000-0001-8632-6658 ; 0000-0002-0223-6944 ; 0000-0003-3364-2942 ; 0000-0002-6222-6617 ; 0000-0002-3433-6050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314518/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314518/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2107,27902,27903,53768,53770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32637598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nelson, Jennifer</creatorcontrib><creatorcontrib>Sorensen, Elizabeth W.</creatorcontrib><creatorcontrib>Mintri, Shrutika</creatorcontrib><creatorcontrib>Rabideau, Amy E.</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Besin, Gilles</creatorcontrib><creatorcontrib>Khatwani, Nikhil</creatorcontrib><creatorcontrib>Su, Stephen</creatorcontrib><creatorcontrib>Miracco, Edward J.</creatorcontrib><creatorcontrib>Issa, William J.</creatorcontrib><creatorcontrib>Hoge, Stephen</creatorcontrib><creatorcontrib>Stanton, Matthew G.</creatorcontrib><creatorcontrib>Joyal, John L.</creatorcontrib><title>Impact of mRNA chemistry and manufacturing process on innate immune activation</title><title>Science advances</title><addtitle>SCI ADV</addtitle><addtitle>Sci Adv</addtitle><description>Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1 m Psi), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1 m Psi made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA.</description><subject>Health and Medicine</subject><subject>Immunology</subject><subject>Multidisciplinary Sciences</subject><subject>SciAdv r-articles</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1rVDEUxYMotrTdupQsBZnx5bPJRiiD1UJpQXQd8pKbNjIvGZO8kfavN3XGoe5cJXB_5-TmHITekGFJCJUfqovWb5fWPkql2Qt0TNm5WFDB1ctn9yN0VuuPYRgIl1IQ_RodMSr7VKtjdHM1baxrOAc8fb25wO4eplhbecA2eTzZNIc-nktMd3hTsoNacU44pmQb4DhNcwLcibi1LeZ0il4Fu65wtj9P0PfLT99WXxbXt5-vVhfXC8eFbAvPyOidZkx4rZ0knlNF9KgCcBUsCTZIOQYdpPDAGGFaOR-6UgOzQoeBnaCPO9_NPE7gHaRW7NpsSpxseTDZRvPvJMV7c5e35pwRLojqBu_2BiX_nKE207_tYL22CfJcDeW0x0UYpx1d7lBXcq0FwuEZMpinHsyuB7PvoQvePl_ugP9NvQNqB_yCMYeuhuTggPWmBGdi4OSpM7qK7U-0qzyn1qXv_1_KfgO_bKh9</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Nelson, Jennifer</creator><creator>Sorensen, Elizabeth W.</creator><creator>Mintri, Shrutika</creator><creator>Rabideau, Amy E.</creator><creator>Zheng, Wei</creator><creator>Besin, Gilles</creator><creator>Khatwani, Nikhil</creator><creator>Su, Stephen</creator><creator>Miracco, Edward J.</creator><creator>Issa, William J.</creator><creator>Hoge, Stephen</creator><creator>Stanton, Matthew G.</creator><creator>Joyal, John L.</creator><general>Amer Assoc Advancement Science</general><general>American Association for the Advancement of Science</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7964-4615</orcidid><orcidid>https://orcid.org/0000-0002-9196-2795</orcidid><orcidid>https://orcid.org/0000-0001-8632-6658</orcidid><orcidid>https://orcid.org/0000-0002-0223-6944</orcidid><orcidid>https://orcid.org/0000-0003-3364-2942</orcidid><orcidid>https://orcid.org/0000-0002-6222-6617</orcidid><orcidid>https://orcid.org/0000-0002-3433-6050</orcidid></search><sort><creationdate>20200601</creationdate><title>Impact of mRNA chemistry and manufacturing process on innate immune activation</title><author>Nelson, Jennifer ; Sorensen, Elizabeth W. ; Mintri, Shrutika ; Rabideau, Amy E. ; Zheng, Wei ; Besin, Gilles ; Khatwani, Nikhil ; Su, Stephen ; Miracco, Edward J. ; Issa, William J. ; Hoge, Stephen ; Stanton, Matthew G. ; Joyal, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-d31bdc9335d99c61d42819b8fe48fa1faf66bf9f65de331398cdf4569e3a59f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Health and Medicine</topic><topic>Immunology</topic><topic>Multidisciplinary Sciences</topic><topic>SciAdv r-articles</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, Jennifer</creatorcontrib><creatorcontrib>Sorensen, Elizabeth W.</creatorcontrib><creatorcontrib>Mintri, Shrutika</creatorcontrib><creatorcontrib>Rabideau, Amy E.</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Besin, Gilles</creatorcontrib><creatorcontrib>Khatwani, Nikhil</creatorcontrib><creatorcontrib>Su, Stephen</creatorcontrib><creatorcontrib>Miracco, Edward J.</creatorcontrib><creatorcontrib>Issa, William J.</creatorcontrib><creatorcontrib>Hoge, Stephen</creatorcontrib><creatorcontrib>Stanton, Matthew G.</creatorcontrib><creatorcontrib>Joyal, John L.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nelson, Jennifer</au><au>Sorensen, Elizabeth W.</au><au>Mintri, Shrutika</au><au>Rabideau, Amy E.</au><au>Zheng, Wei</au><au>Besin, Gilles</au><au>Khatwani, Nikhil</au><au>Su, Stephen</au><au>Miracco, Edward J.</au><au>Issa, William J.</au><au>Hoge, Stephen</au><au>Stanton, Matthew G.</au><au>Joyal, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of mRNA chemistry and manufacturing process on innate immune activation</atitle><jtitle>Science advances</jtitle><stitle>SCI ADV</stitle><addtitle>Sci Adv</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>6</volume><issue>26</issue><spage>eaaz6893</spage><epage>eaaz6893</epage><pages>eaaz6893-eaaz6893</pages><artnum>6893</artnum><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1 m Psi), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1 m Psi made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA.</abstract><cop>WASHINGTON</cop><pub>Amer Assoc Advancement Science</pub><pmid>32637598</pmid><doi>10.1126/sciadv.aaz6893</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7964-4615</orcidid><orcidid>https://orcid.org/0000-0002-9196-2795</orcidid><orcidid>https://orcid.org/0000-0001-8632-6658</orcidid><orcidid>https://orcid.org/0000-0002-0223-6944</orcidid><orcidid>https://orcid.org/0000-0003-3364-2942</orcidid><orcidid>https://orcid.org/0000-0002-6222-6617</orcidid><orcidid>https://orcid.org/0000-0002-3433-6050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-06, Vol.6 (26), p.eaaz6893-eaaz6893, Article 6893
issn 2375-2548
2375-2548
language eng
recordid cdi_proquest_miscellaneous_2421461342
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Health and Medicine
Immunology
Multidisciplinary Sciences
SciAdv r-articles
Science & Technology
Science & Technology - Other Topics
title Impact of mRNA chemistry and manufacturing process on innate immune activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20mRNA%20chemistry%20and%20manufacturing%20process%20on%20innate%20immune%20activation&rft.jtitle=Science%20advances&rft.au=Nelson,%20Jennifer&rft.date=2020-06-01&rft.volume=6&rft.issue=26&rft.spage=eaaz6893&rft.epage=eaaz6893&rft.pages=eaaz6893-eaaz6893&rft.artnum=6893&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz6893&rft_dat=%3Cproquest_pubme%3E2421461342%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421461342&rft_id=info:pmid/32637598&rfr_iscdi=true