Growth and NO2‑Sensing Properties of Biaxial p‑SnO/n-ZnO Heterostructured Nanowires

Biaxial p-SnO/n-ZnO heterostructured nanowires (average length of 10 μm) were grown onto a glass substrate by thermal evaporation in vacuum. These nanowires had spherical ball tips, and the size of the SnO part increased gradually from the top to the bottom of the nanowire, but the corresponding siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-07, Vol.12 (30), p.34274-34282
Hauptverfasser: Hung, Pham Tien, Hoat, Phung Dinh, Hien, Vu Xuan, Lee, Hee-Young, Lee, Sangwook, Lee, Joon-Hyung, Kim, Jeong-Joo, Heo, Young-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34282
container_issue 30
container_start_page 34274
container_title ACS applied materials & interfaces
container_volume 12
creator Hung, Pham Tien
Hoat, Phung Dinh
Hien, Vu Xuan
Lee, Hee-Young
Lee, Sangwook
Lee, Joon-Hyung
Kim, Jeong-Joo
Heo, Young-Woo
description Biaxial p-SnO/n-ZnO heterostructured nanowires (average length of 10 μm) were grown onto a glass substrate by thermal evaporation in vacuum. These nanowires had spherical ball tips, and the size of the SnO part increased gradually from the top to the bottom of the nanowire, but the corresponding size of ZnO varied slightly. The Sn–Zn alloy formed in the tips resulted in determined as the catalyst of the growth of the ZnO nanowires. The growth process of the p-SnO/n-ZnO biaxial nanowires is discussed based on vapor–liquid–solid (VLS) based on the subsequent growth process: the VLS catalytic growth of the ZnO nanowire and subsequent epitaxial SnO growth on the sidewall of the pregrown ZnO nanowire. An epitaxial relationship, (001)SnO//(110)ZnO and [110]SnO//[002]ZnO, was observed in the biaxial p-SnO/n-ZnO heterostructured nanowires. The gas-sensing properties of the as-synthesized p-SnO/n-ZnO nanowires were investigated. The results show that the device exhibit a good performance to the ppb-level NO2 at room temperature (25 °C) without light illumination. The detection limit of the p-SnO/n-ZnO sensor to NO2 is 50 ppb. Moreover, the NO2-sensing properties of the p-SnO/n-ZnO device were investigated under various relative humidity. Finally, the NO2-sensing mechanism of the p-SnO/n-ZnO nanowires was proposed and discussed.
doi_str_mv 10.1021/acsami.0c04974
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421460851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421460851</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-84321e55a0f39bf2549fb8d4f664a55b585f9b41b16c412a735bb7ecbad369b3</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWKtb11mKMG1-vkxnliraCsURLAhuhmSaaMo0qUmGuvQVfEWfxCktru5dHC6Xg9AlJSNKGB3LJsq1HZGGQDmBIzSgJUBWMMGO_zvAKTqLcUVIzhkRA_Q6DX6bPrB0S_xUsd_vnxftonXv-Dn4jQ7J6oi9wbdWflnZ4s2OcNXYZW-uwjOddPAxha5JXdD9hHR-a4OO5-jEyDbqi0MO0eLhfnE3y-bV9PHuZp5JxnjKCuCMaiEkMbxUhgkojSqWYPIcpBBKFMKUCqiieQOUyQkXSk10o-SS56XiQ3S1n90E_9npmOq1jY1uW-m072LNgFHISSFoj17v0d5TvfJdcP2vmpJ6J6_ey6sP8vgfE3BlSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421460851</pqid></control><display><type>article</type><title>Growth and NO2‑Sensing Properties of Biaxial p‑SnO/n-ZnO Heterostructured Nanowires</title><source>American Chemical Society Journals</source><creator>Hung, Pham Tien ; Hoat, Phung Dinh ; Hien, Vu Xuan ; Lee, Hee-Young ; Lee, Sangwook ; Lee, Joon-Hyung ; Kim, Jeong-Joo ; Heo, Young-Woo</creator><creatorcontrib>Hung, Pham Tien ; Hoat, Phung Dinh ; Hien, Vu Xuan ; Lee, Hee-Young ; Lee, Sangwook ; Lee, Joon-Hyung ; Kim, Jeong-Joo ; Heo, Young-Woo</creatorcontrib><description>Biaxial p-SnO/n-ZnO heterostructured nanowires (average length of 10 μm) were grown onto a glass substrate by thermal evaporation in vacuum. These nanowires had spherical ball tips, and the size of the SnO part increased gradually from the top to the bottom of the nanowire, but the corresponding size of ZnO varied slightly. The Sn–Zn alloy formed in the tips resulted in determined as the catalyst of the growth of the ZnO nanowires. The growth process of the p-SnO/n-ZnO biaxial nanowires is discussed based on vapor–liquid–solid (VLS) based on the subsequent growth process: the VLS catalytic growth of the ZnO nanowire and subsequent epitaxial SnO growth on the sidewall of the pregrown ZnO nanowire. An epitaxial relationship, (001)SnO//(110)ZnO and [110]SnO//[002]ZnO, was observed in the biaxial p-SnO/n-ZnO heterostructured nanowires. The gas-sensing properties of the as-synthesized p-SnO/n-ZnO nanowires were investigated. The results show that the device exhibit a good performance to the ppb-level NO2 at room temperature (25 °C) without light illumination. The detection limit of the p-SnO/n-ZnO sensor to NO2 is 50 ppb. Moreover, the NO2-sensing properties of the p-SnO/n-ZnO device were investigated under various relative humidity. Finally, the NO2-sensing mechanism of the p-SnO/n-ZnO nanowires was proposed and discussed.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c04974</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2020-07, Vol.12 (30), p.34274-34282</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3196-4174 ; 0000-0003-3389-746X ; 0000-0003-0194-2991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c04974$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c04974$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Hung, Pham Tien</creatorcontrib><creatorcontrib>Hoat, Phung Dinh</creatorcontrib><creatorcontrib>Hien, Vu Xuan</creatorcontrib><creatorcontrib>Lee, Hee-Young</creatorcontrib><creatorcontrib>Lee, Sangwook</creatorcontrib><creatorcontrib>Lee, Joon-Hyung</creatorcontrib><creatorcontrib>Kim, Jeong-Joo</creatorcontrib><creatorcontrib>Heo, Young-Woo</creatorcontrib><title>Growth and NO2‑Sensing Properties of Biaxial p‑SnO/n-ZnO Heterostructured Nanowires</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Biaxial p-SnO/n-ZnO heterostructured nanowires (average length of 10 μm) were grown onto a glass substrate by thermal evaporation in vacuum. These nanowires had spherical ball tips, and the size of the SnO part increased gradually from the top to the bottom of the nanowire, but the corresponding size of ZnO varied slightly. The Sn–Zn alloy formed in the tips resulted in determined as the catalyst of the growth of the ZnO nanowires. The growth process of the p-SnO/n-ZnO biaxial nanowires is discussed based on vapor–liquid–solid (VLS) based on the subsequent growth process: the VLS catalytic growth of the ZnO nanowire and subsequent epitaxial SnO growth on the sidewall of the pregrown ZnO nanowire. An epitaxial relationship, (001)SnO//(110)ZnO and [110]SnO//[002]ZnO, was observed in the biaxial p-SnO/n-ZnO heterostructured nanowires. The gas-sensing properties of the as-synthesized p-SnO/n-ZnO nanowires were investigated. The results show that the device exhibit a good performance to the ppb-level NO2 at room temperature (25 °C) without light illumination. The detection limit of the p-SnO/n-ZnO sensor to NO2 is 50 ppb. Moreover, the NO2-sensing properties of the p-SnO/n-ZnO device were investigated under various relative humidity. Finally, the NO2-sensing mechanism of the p-SnO/n-ZnO nanowires was proposed and discussed.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEYRYMoWKtb11mKMG1-vkxnliraCsURLAhuhmSaaMo0qUmGuvQVfEWfxCktru5dHC6Xg9AlJSNKGB3LJsq1HZGGQDmBIzSgJUBWMMGO_zvAKTqLcUVIzhkRA_Q6DX6bPrB0S_xUsd_vnxftonXv-Dn4jQ7J6oi9wbdWflnZ4s2OcNXYZW-uwjOddPAxha5JXdD9hHR-a4OO5-jEyDbqi0MO0eLhfnE3y-bV9PHuZp5JxnjKCuCMaiEkMbxUhgkojSqWYPIcpBBKFMKUCqiieQOUyQkXSk10o-SS56XiQ3S1n90E_9npmOq1jY1uW-m072LNgFHISSFoj17v0d5TvfJdcP2vmpJ6J6_ey6sP8vgfE3BlSw</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>Hung, Pham Tien</creator><creator>Hoat, Phung Dinh</creator><creator>Hien, Vu Xuan</creator><creator>Lee, Hee-Young</creator><creator>Lee, Sangwook</creator><creator>Lee, Joon-Hyung</creator><creator>Kim, Jeong-Joo</creator><creator>Heo, Young-Woo</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3196-4174</orcidid><orcidid>https://orcid.org/0000-0003-3389-746X</orcidid><orcidid>https://orcid.org/0000-0003-0194-2991</orcidid></search><sort><creationdate>20200729</creationdate><title>Growth and NO2‑Sensing Properties of Biaxial p‑SnO/n-ZnO Heterostructured Nanowires</title><author>Hung, Pham Tien ; Hoat, Phung Dinh ; Hien, Vu Xuan ; Lee, Hee-Young ; Lee, Sangwook ; Lee, Joon-Hyung ; Kim, Jeong-Joo ; Heo, Young-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-84321e55a0f39bf2549fb8d4f664a55b585f9b41b16c412a735bb7ecbad369b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Pham Tien</creatorcontrib><creatorcontrib>Hoat, Phung Dinh</creatorcontrib><creatorcontrib>Hien, Vu Xuan</creatorcontrib><creatorcontrib>Lee, Hee-Young</creatorcontrib><creatorcontrib>Lee, Sangwook</creatorcontrib><creatorcontrib>Lee, Joon-Hyung</creatorcontrib><creatorcontrib>Kim, Jeong-Joo</creatorcontrib><creatorcontrib>Heo, Young-Woo</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Pham Tien</au><au>Hoat, Phung Dinh</au><au>Hien, Vu Xuan</au><au>Lee, Hee-Young</au><au>Lee, Sangwook</au><au>Lee, Joon-Hyung</au><au>Kim, Jeong-Joo</au><au>Heo, Young-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth and NO2‑Sensing Properties of Biaxial p‑SnO/n-ZnO Heterostructured Nanowires</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-07-29</date><risdate>2020</risdate><volume>12</volume><issue>30</issue><spage>34274</spage><epage>34282</epage><pages>34274-34282</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Biaxial p-SnO/n-ZnO heterostructured nanowires (average length of 10 μm) were grown onto a glass substrate by thermal evaporation in vacuum. These nanowires had spherical ball tips, and the size of the SnO part increased gradually from the top to the bottom of the nanowire, but the corresponding size of ZnO varied slightly. The Sn–Zn alloy formed in the tips resulted in determined as the catalyst of the growth of the ZnO nanowires. The growth process of the p-SnO/n-ZnO biaxial nanowires is discussed based on vapor–liquid–solid (VLS) based on the subsequent growth process: the VLS catalytic growth of the ZnO nanowire and subsequent epitaxial SnO growth on the sidewall of the pregrown ZnO nanowire. An epitaxial relationship, (001)SnO//(110)ZnO and [110]SnO//[002]ZnO, was observed in the biaxial p-SnO/n-ZnO heterostructured nanowires. The gas-sensing properties of the as-synthesized p-SnO/n-ZnO nanowires were investigated. The results show that the device exhibit a good performance to the ppb-level NO2 at room temperature (25 °C) without light illumination. The detection limit of the p-SnO/n-ZnO sensor to NO2 is 50 ppb. Moreover, the NO2-sensing properties of the p-SnO/n-ZnO device were investigated under various relative humidity. Finally, the NO2-sensing mechanism of the p-SnO/n-ZnO nanowires was proposed and discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c04974</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3196-4174</orcidid><orcidid>https://orcid.org/0000-0003-3389-746X</orcidid><orcidid>https://orcid.org/0000-0003-0194-2991</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-07, Vol.12 (30), p.34274-34282
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2421460851
source American Chemical Society Journals
subjects Surfaces, Interfaces, and Applications
title Growth and NO2‑Sensing Properties of Biaxial p‑SnO/n-ZnO Heterostructured Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20and%20NO2%E2%80%91Sensing%20Properties%20of%20Biaxial%20p%E2%80%91SnO/n-ZnO%20Heterostructured%20Nanowires&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Hung,%20Pham%20Tien&rft.date=2020-07-29&rft.volume=12&rft.issue=30&rft.spage=34274&rft.epage=34282&rft.pages=34274-34282&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c04974&rft_dat=%3Cproquest_acs_j%3E2421460851%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421460851&rft_id=info:pmid/&rfr_iscdi=true