Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces
A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-07, Vol.117 (29), p.16776-16781 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16781 |
---|---|
container_issue | 29 |
container_start_page | 16776 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Pingali, Sai Venkatesh Smith, Micholas Dean Liu, Shih-Hsien Rawal, Takat B. Pu, Yunqiao Shah, Riddhi Evans, Barbara R. Urban, Volker S. Davison, Brian H. Cai, Charles M. Ragauskas, Arthur J. O’Neill, Hugh M. Smith, Jeremy C. Petridis, Loukas |
description | A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent waterrich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale. |
doi_str_mv | 10.1073/pnas.1922883117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421459571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935377</jstor_id><sourcerecordid>26935377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-f18dd91d1f725f0824c49235d887332070404c87ea08bb4f01ec1449fdca19833</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhS0EIkugpkKyoKGZxM-x3SBF4SlFooHa8ng8G6889uLrici_Z0YbBUF1i_udcx8HodeUXFCi-OUxO7ighjGtOaXqCdpRYmjXC0Oeoh0hTHVaMHGGXgAcCCFGavIcnXHW8571ZIeGj8GXDK0uvsWScZnwEMvsAHDIbkhhxMM9TsW7hMcwx98x7zfIFyjpLuQG2DXsQ0pLKhCwyyNOcZ9jxrDUyfkAL9GzySUIrx7qOfr5-dOP66_dzfcv366vbjovhGrdRPU4GjrSSTE5Ec2EF4ZxOWqtOGdEEUGE1yo4oodBTIQGT4Uw0-gdNZrzc_Th5HtchjmMfl2uumSPNc6u3tviov23k-Ot3Zc7q7hmrBerwduTQYEWLfjYgr9dv5ODb5b2XEnFVuj9w5Rafi0Bmp0jbPe7HMoClglGhTRS0RV99x96KEvN6w82SktpeiVX6vJE-VoAapgeN6bEbiHbLWT7N-RV8eakOEAr9RFnveGSK8X_ALZWo1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428559675</pqid></control><display><type>article</type><title>Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pingali, Sai Venkatesh ; Smith, Micholas Dean ; Liu, Shih-Hsien ; Rawal, Takat B. ; Pu, Yunqiao ; Shah, Riddhi ; Evans, Barbara R. ; Urban, Volker S. ; Davison, Brian H. ; Cai, Charles M. ; Ragauskas, Arthur J. ; O’Neill, Hugh M. ; Smith, Jeremy C. ; Petridis, Loukas</creator><creatorcontrib>Pingali, Sai Venkatesh ; Smith, Micholas Dean ; Liu, Shih-Hsien ; Rawal, Takat B. ; Pu, Yunqiao ; Shah, Riddhi ; Evans, Barbara R. ; Urban, Volker S. ; Davison, Brian H. ; Cai, Charles M. ; Ragauskas, Arthur J. ; O’Neill, Hugh M. ; Smith, Jeremy C. ; Petridis, Loukas ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR) and Oak Ridge Leadership Computing Facility (OLCF) ; USDOE Bioenergy Research Centers (BRC) (United States). Center for Bioenergy Innovation (CBI)</creatorcontrib><description>A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent waterrich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922883117</identifier><identifier>PMID: 32636260</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>09 BIOMASS FUELS ; Aqueous solutions ; Biomass ; Cellulose ; Deconstruction ; Demixing ; Fractionation ; Hardwoods ; Hydrophobicity ; Lignin ; Lignocellulose ; Molecular dynamics ; Nanoclusters ; Neutron scattering ; Neutrons ; Organic solvents ; Physical Sciences ; Polarity ; Poplar ; Pretreatment ; Pretreatment of water ; Renewable fuels ; Solvents ; Temperature dependence ; Tetrahydrofuran</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (29), p.16776-16781</ispartof><rights>Copyright National Academy of Sciences Jul 21, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-f18dd91d1f725f0824c49235d887332070404c87ea08bb4f01ec1449fdca19833</citedby><cites>FETCH-LOGICAL-c447t-f18dd91d1f725f0824c49235d887332070404c87ea08bb4f01ec1449fdca19833</cites><orcidid>0000-0002-3536-554X ; 0000-0003-3191-7770 ; 0000-0002-2574-2567 ; 0000-0002-7408-3609 ; 0000-0002-5047-0815 ; 0000000331917770 ; 0000000274083609 ; 000000023536554X ; 0000000225742567 ; 0000000250470815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935377$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935377$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1637572$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pingali, Sai Venkatesh</creatorcontrib><creatorcontrib>Smith, Micholas Dean</creatorcontrib><creatorcontrib>Liu, Shih-Hsien</creatorcontrib><creatorcontrib>Rawal, Takat B.</creatorcontrib><creatorcontrib>Pu, Yunqiao</creatorcontrib><creatorcontrib>Shah, Riddhi</creatorcontrib><creatorcontrib>Evans, Barbara R.</creatorcontrib><creatorcontrib>Urban, Volker S.</creatorcontrib><creatorcontrib>Davison, Brian H.</creatorcontrib><creatorcontrib>Cai, Charles M.</creatorcontrib><creatorcontrib>Ragauskas, Arthur J.</creatorcontrib><creatorcontrib>O’Neill, Hugh M.</creatorcontrib><creatorcontrib>Smith, Jeremy C.</creatorcontrib><creatorcontrib>Petridis, Loukas</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR) and Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>USDOE Bioenergy Research Centers (BRC) (United States). Center for Bioenergy Innovation (CBI)</creatorcontrib><title>Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent waterrich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.</description><subject>09 BIOMASS FUELS</subject><subject>Aqueous solutions</subject><subject>Biomass</subject><subject>Cellulose</subject><subject>Deconstruction</subject><subject>Demixing</subject><subject>Fractionation</subject><subject>Hardwoods</subject><subject>Hydrophobicity</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Molecular dynamics</subject><subject>Nanoclusters</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Organic solvents</subject><subject>Physical Sciences</subject><subject>Polarity</subject><subject>Poplar</subject><subject>Pretreatment</subject><subject>Pretreatment of water</subject><subject>Renewable fuels</subject><subject>Solvents</subject><subject>Temperature dependence</subject><subject>Tetrahydrofuran</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkTtvFDEUhS0EIkugpkKyoKGZxM-x3SBF4SlFooHa8ng8G6889uLrici_Z0YbBUF1i_udcx8HodeUXFCi-OUxO7ighjGtOaXqCdpRYmjXC0Oeoh0hTHVaMHGGXgAcCCFGavIcnXHW8571ZIeGj8GXDK0uvsWScZnwEMvsAHDIbkhhxMM9TsW7hMcwx98x7zfIFyjpLuQG2DXsQ0pLKhCwyyNOcZ9jxrDUyfkAL9GzySUIrx7qOfr5-dOP66_dzfcv366vbjovhGrdRPU4GjrSSTE5Ec2EF4ZxOWqtOGdEEUGE1yo4oodBTIQGT4Uw0-gdNZrzc_Th5HtchjmMfl2uumSPNc6u3tviov23k-Ot3Zc7q7hmrBerwduTQYEWLfjYgr9dv5ODb5b2XEnFVuj9w5Rafi0Bmp0jbPe7HMoClglGhTRS0RV99x96KEvN6w82SktpeiVX6vJE-VoAapgeN6bEbiHbLWT7N-RV8eakOEAr9RFnveGSK8X_ALZWo1A</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Pingali, Sai Venkatesh</creator><creator>Smith, Micholas Dean</creator><creator>Liu, Shih-Hsien</creator><creator>Rawal, Takat B.</creator><creator>Pu, Yunqiao</creator><creator>Shah, Riddhi</creator><creator>Evans, Barbara R.</creator><creator>Urban, Volker S.</creator><creator>Davison, Brian H.</creator><creator>Cai, Charles M.</creator><creator>Ragauskas, Arthur J.</creator><creator>O’Neill, Hugh M.</creator><creator>Smith, Jeremy C.</creator><creator>Petridis, Loukas</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3536-554X</orcidid><orcidid>https://orcid.org/0000-0003-3191-7770</orcidid><orcidid>https://orcid.org/0000-0002-2574-2567</orcidid><orcidid>https://orcid.org/0000-0002-7408-3609</orcidid><orcidid>https://orcid.org/0000-0002-5047-0815</orcidid><orcidid>https://orcid.org/0000000331917770</orcidid><orcidid>https://orcid.org/0000000274083609</orcidid><orcidid>https://orcid.org/000000023536554X</orcidid><orcidid>https://orcid.org/0000000225742567</orcidid><orcidid>https://orcid.org/0000000250470815</orcidid></search><sort><creationdate>20200721</creationdate><title>Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces</title><author>Pingali, Sai Venkatesh ; Smith, Micholas Dean ; Liu, Shih-Hsien ; Rawal, Takat B. ; Pu, Yunqiao ; Shah, Riddhi ; Evans, Barbara R. ; Urban, Volker S. ; Davison, Brian H. ; Cai, Charles M. ; Ragauskas, Arthur J. ; O’Neill, Hugh M. ; Smith, Jeremy C. ; Petridis, Loukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-f18dd91d1f725f0824c49235d887332070404c87ea08bb4f01ec1449fdca19833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>09 BIOMASS FUELS</topic><topic>Aqueous solutions</topic><topic>Biomass</topic><topic>Cellulose</topic><topic>Deconstruction</topic><topic>Demixing</topic><topic>Fractionation</topic><topic>Hardwoods</topic><topic>Hydrophobicity</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Molecular dynamics</topic><topic>Nanoclusters</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Organic solvents</topic><topic>Physical Sciences</topic><topic>Polarity</topic><topic>Poplar</topic><topic>Pretreatment</topic><topic>Pretreatment of water</topic><topic>Renewable fuels</topic><topic>Solvents</topic><topic>Temperature dependence</topic><topic>Tetrahydrofuran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pingali, Sai Venkatesh</creatorcontrib><creatorcontrib>Smith, Micholas Dean</creatorcontrib><creatorcontrib>Liu, Shih-Hsien</creatorcontrib><creatorcontrib>Rawal, Takat B.</creatorcontrib><creatorcontrib>Pu, Yunqiao</creatorcontrib><creatorcontrib>Shah, Riddhi</creatorcontrib><creatorcontrib>Evans, Barbara R.</creatorcontrib><creatorcontrib>Urban, Volker S.</creatorcontrib><creatorcontrib>Davison, Brian H.</creatorcontrib><creatorcontrib>Cai, Charles M.</creatorcontrib><creatorcontrib>Ragauskas, Arthur J.</creatorcontrib><creatorcontrib>O’Neill, Hugh M.</creatorcontrib><creatorcontrib>Smith, Jeremy C.</creatorcontrib><creatorcontrib>Petridis, Loukas</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR) and Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>USDOE Bioenergy Research Centers (BRC) (United States). Center for Bioenergy Innovation (CBI)</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pingali, Sai Venkatesh</au><au>Smith, Micholas Dean</au><au>Liu, Shih-Hsien</au><au>Rawal, Takat B.</au><au>Pu, Yunqiao</au><au>Shah, Riddhi</au><au>Evans, Barbara R.</au><au>Urban, Volker S.</au><au>Davison, Brian H.</au><au>Cai, Charles M.</au><au>Ragauskas, Arthur J.</au><au>O’Neill, Hugh M.</au><au>Smith, Jeremy C.</au><au>Petridis, Loukas</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR) and Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>USDOE Bioenergy Research Centers (BRC) (United States). Center for Bioenergy Innovation (CBI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-07-21</date><risdate>2020</risdate><volume>117</volume><issue>29</issue><spage>16776</spage><epage>16781</epage><pages>16776-16781</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent waterrich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>32636260</pmid><doi>10.1073/pnas.1922883117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3536-554X</orcidid><orcidid>https://orcid.org/0000-0003-3191-7770</orcidid><orcidid>https://orcid.org/0000-0002-2574-2567</orcidid><orcidid>https://orcid.org/0000-0002-7408-3609</orcidid><orcidid>https://orcid.org/0000-0002-5047-0815</orcidid><orcidid>https://orcid.org/0000000331917770</orcidid><orcidid>https://orcid.org/0000000274083609</orcidid><orcidid>https://orcid.org/000000023536554X</orcidid><orcidid>https://orcid.org/0000000225742567</orcidid><orcidid>https://orcid.org/0000000250470815</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (29), p.16776-16781 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_2421459571 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 09 BIOMASS FUELS Aqueous solutions Biomass Cellulose Deconstruction Demixing Fractionation Hardwoods Hydrophobicity Lignin Lignocellulose Molecular dynamics Nanoclusters Neutron scattering Neutrons Organic solvents Physical Sciences Polarity Poplar Pretreatment Pretreatment of water Renewable fuels Solvents Temperature dependence Tetrahydrofuran |
title | Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconstruction%20of%20biomass%20enabled%20by%20local%20demixing%20of%20cosolvents%20at%20cellulose%20and%20lignin%20surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pingali,%20Sai%20Venkatesh&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20High%20Flux%20Isotope%20Reactor%20(HFIR)%20and%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2020-07-21&rft.volume=117&rft.issue=29&rft.spage=16776&rft.epage=16781&rft.pages=16776-16781&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922883117&rft_dat=%3Cjstor_pubme%3E26935377%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428559675&rft_id=info:pmid/32636260&rft_jstor_id=26935377&rfr_iscdi=true |