Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces

A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-07, Vol.117 (29), p.16776-16781
Hauptverfasser: Pingali, Sai Venkatesh, Smith, Micholas Dean, Liu, Shih-Hsien, Rawal, Takat B., Pu, Yunqiao, Shah, Riddhi, Evans, Barbara R., Urban, Volker S., Davison, Brian H., Cai, Charles M., Ragauskas, Arthur J., O’Neill, Hugh M., Smith, Jeremy C., Petridis, Loukas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16781
container_issue 29
container_start_page 16776
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Pingali, Sai Venkatesh
Smith, Micholas Dean
Liu, Shih-Hsien
Rawal, Takat B.
Pu, Yunqiao
Shah, Riddhi
Evans, Barbara R.
Urban, Volker S.
Davison, Brian H.
Cai, Charles M.
Ragauskas, Arthur J.
O’Neill, Hugh M.
Smith, Jeremy C.
Petridis, Loukas
description A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent waterrich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.
doi_str_mv 10.1073/pnas.1922883117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2421459571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935377</jstor_id><sourcerecordid>26935377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-f18dd91d1f725f0824c49235d887332070404c87ea08bb4f01ec1449fdca19833</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhS0EIkugpkKyoKGZxM-x3SBF4SlFooHa8ng8G6889uLrici_Z0YbBUF1i_udcx8HodeUXFCi-OUxO7ighjGtOaXqCdpRYmjXC0Oeoh0hTHVaMHGGXgAcCCFGavIcnXHW8571ZIeGj8GXDK0uvsWScZnwEMvsAHDIbkhhxMM9TsW7hMcwx98x7zfIFyjpLuQG2DXsQ0pLKhCwyyNOcZ9jxrDUyfkAL9GzySUIrx7qOfr5-dOP66_dzfcv366vbjovhGrdRPU4GjrSSTE5Ec2EF4ZxOWqtOGdEEUGE1yo4oodBTIQGT4Uw0-gdNZrzc_Th5HtchjmMfl2uumSPNc6u3tviov23k-Ot3Zc7q7hmrBerwduTQYEWLfjYgr9dv5ODb5b2XEnFVuj9w5Rafi0Bmp0jbPe7HMoClglGhTRS0RV99x96KEvN6w82SktpeiVX6vJE-VoAapgeN6bEbiHbLWT7N-RV8eakOEAr9RFnveGSK8X_ALZWo1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428559675</pqid></control><display><type>article</type><title>Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pingali, Sai Venkatesh ; Smith, Micholas Dean ; Liu, Shih-Hsien ; Rawal, Takat B. ; Pu, Yunqiao ; Shah, Riddhi ; Evans, Barbara R. ; Urban, Volker S. ; Davison, Brian H. ; Cai, Charles M. ; Ragauskas, Arthur J. ; O’Neill, Hugh M. ; Smith, Jeremy C. ; Petridis, Loukas</creator><creatorcontrib>Pingali, Sai Venkatesh ; Smith, Micholas Dean ; Liu, Shih-Hsien ; Rawal, Takat B. ; Pu, Yunqiao ; Shah, Riddhi ; Evans, Barbara R. ; Urban, Volker S. ; Davison, Brian H. ; Cai, Charles M. ; Ragauskas, Arthur J. ; O’Neill, Hugh M. ; Smith, Jeremy C. ; Petridis, Loukas ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR) and Oak Ridge Leadership Computing Facility (OLCF) ; USDOE Bioenergy Research Centers (BRC) (United States). Center for Bioenergy Innovation (CBI)</creatorcontrib><description>A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (&gt;25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent waterrich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922883117</identifier><identifier>PMID: 32636260</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>09 BIOMASS FUELS ; Aqueous solutions ; Biomass ; Cellulose ; Deconstruction ; Demixing ; Fractionation ; Hardwoods ; Hydrophobicity ; Lignin ; Lignocellulose ; Molecular dynamics ; Nanoclusters ; Neutron scattering ; Neutrons ; Organic solvents ; Physical Sciences ; Polarity ; Poplar ; Pretreatment ; Pretreatment of water ; Renewable fuels ; Solvents ; Temperature dependence ; Tetrahydrofuran</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (29), p.16776-16781</ispartof><rights>Copyright National Academy of Sciences Jul 21, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-f18dd91d1f725f0824c49235d887332070404c87ea08bb4f01ec1449fdca19833</citedby><cites>FETCH-LOGICAL-c447t-f18dd91d1f725f0824c49235d887332070404c87ea08bb4f01ec1449fdca19833</cites><orcidid>0000-0002-3536-554X ; 0000-0003-3191-7770 ; 0000-0002-2574-2567 ; 0000-0002-7408-3609 ; 0000-0002-5047-0815 ; 0000000331917770 ; 0000000274083609 ; 000000023536554X ; 0000000225742567 ; 0000000250470815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935377$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935377$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1637572$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pingali, Sai Venkatesh</creatorcontrib><creatorcontrib>Smith, Micholas Dean</creatorcontrib><creatorcontrib>Liu, Shih-Hsien</creatorcontrib><creatorcontrib>Rawal, Takat B.</creatorcontrib><creatorcontrib>Pu, Yunqiao</creatorcontrib><creatorcontrib>Shah, Riddhi</creatorcontrib><creatorcontrib>Evans, Barbara R.</creatorcontrib><creatorcontrib>Urban, Volker S.</creatorcontrib><creatorcontrib>Davison, Brian H.</creatorcontrib><creatorcontrib>Cai, Charles M.</creatorcontrib><creatorcontrib>Ragauskas, Arthur J.</creatorcontrib><creatorcontrib>O’Neill, Hugh M.</creatorcontrib><creatorcontrib>Smith, Jeremy C.</creatorcontrib><creatorcontrib>Petridis, Loukas</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR) and Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>USDOE Bioenergy Research Centers (BRC) (United States). Center for Bioenergy Innovation (CBI)</creatorcontrib><title>Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (&gt;25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent waterrich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.</description><subject>09 BIOMASS FUELS</subject><subject>Aqueous solutions</subject><subject>Biomass</subject><subject>Cellulose</subject><subject>Deconstruction</subject><subject>Demixing</subject><subject>Fractionation</subject><subject>Hardwoods</subject><subject>Hydrophobicity</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Molecular dynamics</subject><subject>Nanoclusters</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Organic solvents</subject><subject>Physical Sciences</subject><subject>Polarity</subject><subject>Poplar</subject><subject>Pretreatment</subject><subject>Pretreatment of water</subject><subject>Renewable fuels</subject><subject>Solvents</subject><subject>Temperature dependence</subject><subject>Tetrahydrofuran</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkTtvFDEUhS0EIkugpkKyoKGZxM-x3SBF4SlFooHa8ng8G6889uLrici_Z0YbBUF1i_udcx8HodeUXFCi-OUxO7ighjGtOaXqCdpRYmjXC0Oeoh0hTHVaMHGGXgAcCCFGavIcnXHW8571ZIeGj8GXDK0uvsWScZnwEMvsAHDIbkhhxMM9TsW7hMcwx98x7zfIFyjpLuQG2DXsQ0pLKhCwyyNOcZ9jxrDUyfkAL9GzySUIrx7qOfr5-dOP66_dzfcv366vbjovhGrdRPU4GjrSSTE5Ec2EF4ZxOWqtOGdEEUGE1yo4oodBTIQGT4Uw0-gdNZrzc_Th5HtchjmMfl2uumSPNc6u3tviov23k-Ot3Zc7q7hmrBerwduTQYEWLfjYgr9dv5ODb5b2XEnFVuj9w5Rafi0Bmp0jbPe7HMoClglGhTRS0RV99x96KEvN6w82SktpeiVX6vJE-VoAapgeN6bEbiHbLWT7N-RV8eakOEAr9RFnveGSK8X_ALZWo1A</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Pingali, Sai Venkatesh</creator><creator>Smith, Micholas Dean</creator><creator>Liu, Shih-Hsien</creator><creator>Rawal, Takat B.</creator><creator>Pu, Yunqiao</creator><creator>Shah, Riddhi</creator><creator>Evans, Barbara R.</creator><creator>Urban, Volker S.</creator><creator>Davison, Brian H.</creator><creator>Cai, Charles M.</creator><creator>Ragauskas, Arthur J.</creator><creator>O’Neill, Hugh M.</creator><creator>Smith, Jeremy C.</creator><creator>Petridis, Loukas</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3536-554X</orcidid><orcidid>https://orcid.org/0000-0003-3191-7770</orcidid><orcidid>https://orcid.org/0000-0002-2574-2567</orcidid><orcidid>https://orcid.org/0000-0002-7408-3609</orcidid><orcidid>https://orcid.org/0000-0002-5047-0815</orcidid><orcidid>https://orcid.org/0000000331917770</orcidid><orcidid>https://orcid.org/0000000274083609</orcidid><orcidid>https://orcid.org/000000023536554X</orcidid><orcidid>https://orcid.org/0000000225742567</orcidid><orcidid>https://orcid.org/0000000250470815</orcidid></search><sort><creationdate>20200721</creationdate><title>Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces</title><author>Pingali, Sai Venkatesh ; Smith, Micholas Dean ; Liu, Shih-Hsien ; Rawal, Takat B. ; Pu, Yunqiao ; Shah, Riddhi ; Evans, Barbara R. ; Urban, Volker S. ; Davison, Brian H. ; Cai, Charles M. ; Ragauskas, Arthur J. ; O’Neill, Hugh M. ; Smith, Jeremy C. ; Petridis, Loukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-f18dd91d1f725f0824c49235d887332070404c87ea08bb4f01ec1449fdca19833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>09 BIOMASS FUELS</topic><topic>Aqueous solutions</topic><topic>Biomass</topic><topic>Cellulose</topic><topic>Deconstruction</topic><topic>Demixing</topic><topic>Fractionation</topic><topic>Hardwoods</topic><topic>Hydrophobicity</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Molecular dynamics</topic><topic>Nanoclusters</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Organic solvents</topic><topic>Physical Sciences</topic><topic>Polarity</topic><topic>Poplar</topic><topic>Pretreatment</topic><topic>Pretreatment of water</topic><topic>Renewable fuels</topic><topic>Solvents</topic><topic>Temperature dependence</topic><topic>Tetrahydrofuran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pingali, Sai Venkatesh</creatorcontrib><creatorcontrib>Smith, Micholas Dean</creatorcontrib><creatorcontrib>Liu, Shih-Hsien</creatorcontrib><creatorcontrib>Rawal, Takat B.</creatorcontrib><creatorcontrib>Pu, Yunqiao</creatorcontrib><creatorcontrib>Shah, Riddhi</creatorcontrib><creatorcontrib>Evans, Barbara R.</creatorcontrib><creatorcontrib>Urban, Volker S.</creatorcontrib><creatorcontrib>Davison, Brian H.</creatorcontrib><creatorcontrib>Cai, Charles M.</creatorcontrib><creatorcontrib>Ragauskas, Arthur J.</creatorcontrib><creatorcontrib>O’Neill, Hugh M.</creatorcontrib><creatorcontrib>Smith, Jeremy C.</creatorcontrib><creatorcontrib>Petridis, Loukas</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR) and Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>USDOE Bioenergy Research Centers (BRC) (United States). Center for Bioenergy Innovation (CBI)</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pingali, Sai Venkatesh</au><au>Smith, Micholas Dean</au><au>Liu, Shih-Hsien</au><au>Rawal, Takat B.</au><au>Pu, Yunqiao</au><au>Shah, Riddhi</au><au>Evans, Barbara R.</au><au>Urban, Volker S.</au><au>Davison, Brian H.</au><au>Cai, Charles M.</au><au>Ragauskas, Arthur J.</au><au>O’Neill, Hugh M.</au><au>Smith, Jeremy C.</au><au>Petridis, Loukas</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR) and Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>USDOE Bioenergy Research Centers (BRC) (United States). Center for Bioenergy Innovation (CBI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-07-21</date><risdate>2020</risdate><volume>117</volume><issue>29</issue><spage>16776</spage><epage>16781</epage><pages>16776-16781</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (&gt;25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent waterrich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>32636260</pmid><doi>10.1073/pnas.1922883117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3536-554X</orcidid><orcidid>https://orcid.org/0000-0003-3191-7770</orcidid><orcidid>https://orcid.org/0000-0002-2574-2567</orcidid><orcidid>https://orcid.org/0000-0002-7408-3609</orcidid><orcidid>https://orcid.org/0000-0002-5047-0815</orcidid><orcidid>https://orcid.org/0000000331917770</orcidid><orcidid>https://orcid.org/0000000274083609</orcidid><orcidid>https://orcid.org/000000023536554X</orcidid><orcidid>https://orcid.org/0000000225742567</orcidid><orcidid>https://orcid.org/0000000250470815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (29), p.16776-16781
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_2421459571
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 09 BIOMASS FUELS
Aqueous solutions
Biomass
Cellulose
Deconstruction
Demixing
Fractionation
Hardwoods
Hydrophobicity
Lignin
Lignocellulose
Molecular dynamics
Nanoclusters
Neutron scattering
Neutrons
Organic solvents
Physical Sciences
Polarity
Poplar
Pretreatment
Pretreatment of water
Renewable fuels
Solvents
Temperature dependence
Tetrahydrofuran
title Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconstruction%20of%20biomass%20enabled%20by%20local%20demixing%20of%20cosolvents%20at%20cellulose%20and%20lignin%20surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pingali,%20Sai%20Venkatesh&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20High%20Flux%20Isotope%20Reactor%20(HFIR)%20and%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2020-07-21&rft.volume=117&rft.issue=29&rft.spage=16776&rft.epage=16781&rft.pages=16776-16781&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922883117&rft_dat=%3Cjstor_pubme%3E26935377%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428559675&rft_id=info:pmid/32636260&rft_jstor_id=26935377&rfr_iscdi=true