MOF-Derived Sulfide-Based Electrocatalyst and Scaffold for Boosted Hydrogen Production
Metal–organic frameworks (MOFs) can act as precursors or templates to a myriad of nanostructured materials that are difficult to prepare. In this study, Co-MOF nanorods (NRs) were prepared at room temperature followed by a calcination and hydrothermal sulfurization strategy to transform the MOF into...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-07, Vol.12 (30), p.33595-33602 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal–organic frameworks (MOFs) can act as precursors or templates to a myriad of nanostructured materials that are difficult to prepare. In this study, Co-MOF nanorods (NRs) were prepared at room temperature followed by a calcination and hydrothermal sulfurization strategy to transform the MOF into CoS NRs on carbon cloth (CoS/CC). Intriguingly, the resultant 3D sulfide NRs can serve as scaffolds to electrodeposit layered double hydroxides (LDHs) on the surfaces. Through combining the advantages of structure and composition, the as-fabricated CoS@CoNi-LDH/CC exhibits remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). An overpotential of 124 mV is needed to reach a current density of 10 mA cm–2 with a Tafel slope of only 89 mV dec–1, which is superior to that of pure CoS/CC (141 mV along with 103 mV dec–1) and other reported cobalt-based catalysts. Notably, after the chronopotentiometry test for 50 h, the overpotential of CoS@CoNi-LDH/CC increased by 17 mV only. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c04302 |