Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy

Purpose We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2020-09, Vol.47 (9), p.3882-3891
Hauptverfasser: Yabe, Takuya, Yamamoto, Seiichi, Oda, Masahiro, Mori, Kensaku, Toshito, Toshiyuki, Akagi, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3891
container_issue 9
container_start_page 3882
container_title Medical physics (Lancaster)
container_volume 47
creator Yabe, Takuya
Yamamoto, Seiichi
Oda, Masahiro
Mori, Kensaku
Toshito, Toshiyuki
Akagi, Takashi
description Purpose We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time‐consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN). Methods In this study, we adopted the U‐Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two‐dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U‐Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U‐Net model. Results All of the U‐Net model's predicted images were in good agreement with the MC‐calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images. Conclusion We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy.
doi_str_mv 10.1002/mp.14372
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2420647345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420647345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3872-dcb46679bdfd115a3e85d2cddd08641630555db3b6a05e8d0fea3fd4964f018a3</originalsourceid><addsrcrecordid>eNp1kEtP4zAUhS3ECMpD4hcgL9mkc-NX0iVCMDMSCBawjhz7uhiSONgJVVfz1ydtgVmxOtLVd490PkLOcpjnAOxn289zwQu2R2ZMFDwTDBb7ZAawEBkTIA_JUUovAKC4hANyyJlivBDFjPx9iGi9GXzoaHDUhoTU-jREX4_bo4uhpc3Y-g6Twc4g9a1e4gZe6QEjHZPvllRTi9hTE7r30Gw_dUM7HOM2hlWIr9SFSHsdB28apMMzRt2vT8gPp5uEpx95TJ5urh-vfme397_-XF3eZoaXBcusqYVSxaK2zua51BxLaZmx1kKpRK44SCltzWulQWJpwaHmzoqFEg7yUvNjcrHr7WN4GzENVeunPU2jOwxjqtikTE3qhPyPmhhSiuiqPk6b47rKodrortq-2uqe0POP1rFu0X6Bn34nINsBK9_g-tui6u5hV_gP3COLbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420647345</pqid></control><display><type>article</type><title>Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Yabe, Takuya ; Yamamoto, Seiichi ; Oda, Masahiro ; Mori, Kensaku ; Toshito, Toshiyuki ; Akagi, Takashi</creator><creatorcontrib>Yabe, Takuya ; Yamamoto, Seiichi ; Oda, Masahiro ; Mori, Kensaku ; Toshito, Toshiyuki ; Akagi, Takashi</creatorcontrib><description>Purpose We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time‐consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN). Methods In this study, we adopted the U‐Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two‐dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U‐Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U‐Net model. Results All of the U‐Net model's predicted images were in good agreement with the MC‐calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images. Conclusion We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.14372</identifier><identifier>PMID: 32623747</identifier><language>eng</language><publisher>United States</publisher><subject>Cerenkov light ; deep convolutional neural network ; Luminescence ; luminescence of water ; Monte Carlo Method ; Neural Networks, Computer ; particle therapy ; Photons ; Water</subject><ispartof>Medical physics (Lancaster), 2020-09, Vol.47 (9), p.3882-3891</ispartof><rights>2020 American Association of Physicists in Medicine</rights><rights>2020 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3872-dcb46679bdfd115a3e85d2cddd08641630555db3b6a05e8d0fea3fd4964f018a3</citedby><cites>FETCH-LOGICAL-c3872-dcb46679bdfd115a3e85d2cddd08641630555db3b6a05e8d0fea3fd4964f018a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.14372$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.14372$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32623747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yabe, Takuya</creatorcontrib><creatorcontrib>Yamamoto, Seiichi</creatorcontrib><creatorcontrib>Oda, Masahiro</creatorcontrib><creatorcontrib>Mori, Kensaku</creatorcontrib><creatorcontrib>Toshito, Toshiyuki</creatorcontrib><creatorcontrib>Akagi, Takashi</creatorcontrib><title>Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time‐consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN). Methods In this study, we adopted the U‐Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two‐dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U‐Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U‐Net model. Results All of the U‐Net model's predicted images were in good agreement with the MC‐calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images. Conclusion We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy.</description><subject>Cerenkov light</subject><subject>deep convolutional neural network</subject><subject>Luminescence</subject><subject>luminescence of water</subject><subject>Monte Carlo Method</subject><subject>Neural Networks, Computer</subject><subject>particle therapy</subject><subject>Photons</subject><subject>Water</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtP4zAUhS3ECMpD4hcgL9mkc-NX0iVCMDMSCBawjhz7uhiSONgJVVfz1ydtgVmxOtLVd490PkLOcpjnAOxn289zwQu2R2ZMFDwTDBb7ZAawEBkTIA_JUUovAKC4hANyyJlivBDFjPx9iGi9GXzoaHDUhoTU-jREX4_bo4uhpc3Y-g6Twc4g9a1e4gZe6QEjHZPvllRTi9hTE7r30Gw_dUM7HOM2hlWIr9SFSHsdB28apMMzRt2vT8gPp5uEpx95TJ5urh-vfme397_-XF3eZoaXBcusqYVSxaK2zua51BxLaZmx1kKpRK44SCltzWulQWJpwaHmzoqFEg7yUvNjcrHr7WN4GzENVeunPU2jOwxjqtikTE3qhPyPmhhSiuiqPk6b47rKodrortq-2uqe0POP1rFu0X6Bn34nINsBK9_g-tui6u5hV_gP3COLbQ</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Yabe, Takuya</creator><creator>Yamamoto, Seiichi</creator><creator>Oda, Masahiro</creator><creator>Mori, Kensaku</creator><creator>Toshito, Toshiyuki</creator><creator>Akagi, Takashi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202009</creationdate><title>Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy</title><author>Yabe, Takuya ; Yamamoto, Seiichi ; Oda, Masahiro ; Mori, Kensaku ; Toshito, Toshiyuki ; Akagi, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3872-dcb46679bdfd115a3e85d2cddd08641630555db3b6a05e8d0fea3fd4964f018a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cerenkov light</topic><topic>deep convolutional neural network</topic><topic>Luminescence</topic><topic>luminescence of water</topic><topic>Monte Carlo Method</topic><topic>Neural Networks, Computer</topic><topic>particle therapy</topic><topic>Photons</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yabe, Takuya</creatorcontrib><creatorcontrib>Yamamoto, Seiichi</creatorcontrib><creatorcontrib>Oda, Masahiro</creatorcontrib><creatorcontrib>Mori, Kensaku</creatorcontrib><creatorcontrib>Toshito, Toshiyuki</creatorcontrib><creatorcontrib>Akagi, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yabe, Takuya</au><au>Yamamoto, Seiichi</au><au>Oda, Masahiro</au><au>Mori, Kensaku</au><au>Toshito, Toshiyuki</au><au>Akagi, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2020-09</date><risdate>2020</risdate><volume>47</volume><issue>9</issue><spage>3882</spage><epage>3891</epage><pages>3882-3891</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time‐consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN). Methods In this study, we adopted the U‐Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two‐dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U‐Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U‐Net model. Results All of the U‐Net model's predicted images were in good agreement with the MC‐calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images. Conclusion We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy.</abstract><cop>United States</cop><pmid>32623747</pmid><doi>10.1002/mp.14372</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2020-09, Vol.47 (9), p.3882-3891
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_2420647345
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Alma/SFX Local Collection
subjects Cerenkov light
deep convolutional neural network
Luminescence
luminescence of water
Monte Carlo Method
Neural Networks, Computer
particle therapy
Photons
Water
title Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20dose%20distribution%20from%20luminescence%20image%20of%20water%20using%20a%20deep%20convolutional%20neural%20network%20for%20particle%20therapy&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Yabe,%20Takuya&rft.date=2020-09&rft.volume=47&rft.issue=9&rft.spage=3882&rft.epage=3891&rft.pages=3882-3891&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.14372&rft_dat=%3Cproquest_cross%3E2420647345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420647345&rft_id=info:pmid/32623747&rfr_iscdi=true