Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy
Purpose We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is ti...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2020-09, Vol.47 (9), p.3882-3891 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3891 |
---|---|
container_issue | 9 |
container_start_page | 3882 |
container_title | Medical physics (Lancaster) |
container_volume | 47 |
creator | Yabe, Takuya Yamamoto, Seiichi Oda, Masahiro Mori, Kensaku Toshito, Toshiyuki Akagi, Takashi |
description | Purpose
We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time‐consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN).
Methods
In this study, we adopted the U‐Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two‐dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U‐Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U‐Net model.
Results
All of the U‐Net model's predicted images were in good agreement with the MC‐calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images.
Conclusion
We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy. |
doi_str_mv | 10.1002/mp.14372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2420647345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420647345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3872-dcb46679bdfd115a3e85d2cddd08641630555db3b6a05e8d0fea3fd4964f018a3</originalsourceid><addsrcrecordid>eNp1kEtP4zAUhS3ECMpD4hcgL9mkc-NX0iVCMDMSCBawjhz7uhiSONgJVVfz1ydtgVmxOtLVd490PkLOcpjnAOxn289zwQu2R2ZMFDwTDBb7ZAawEBkTIA_JUUovAKC4hANyyJlivBDFjPx9iGi9GXzoaHDUhoTU-jREX4_bo4uhpc3Y-g6Twc4g9a1e4gZe6QEjHZPvllRTi9hTE7r30Gw_dUM7HOM2hlWIr9SFSHsdB28apMMzRt2vT8gPp5uEpx95TJ5urh-vfme397_-XF3eZoaXBcusqYVSxaK2zua51BxLaZmx1kKpRK44SCltzWulQWJpwaHmzoqFEg7yUvNjcrHr7WN4GzENVeunPU2jOwxjqtikTE3qhPyPmhhSiuiqPk6b47rKodrortq-2uqe0POP1rFu0X6Bn34nINsBK9_g-tui6u5hV_gP3COLbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420647345</pqid></control><display><type>article</type><title>Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Yabe, Takuya ; Yamamoto, Seiichi ; Oda, Masahiro ; Mori, Kensaku ; Toshito, Toshiyuki ; Akagi, Takashi</creator><creatorcontrib>Yabe, Takuya ; Yamamoto, Seiichi ; Oda, Masahiro ; Mori, Kensaku ; Toshito, Toshiyuki ; Akagi, Takashi</creatorcontrib><description>Purpose
We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time‐consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN).
Methods
In this study, we adopted the U‐Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two‐dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U‐Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U‐Net model.
Results
All of the U‐Net model's predicted images were in good agreement with the MC‐calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images.
Conclusion
We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.14372</identifier><identifier>PMID: 32623747</identifier><language>eng</language><publisher>United States</publisher><subject>Cerenkov light ; deep convolutional neural network ; Luminescence ; luminescence of water ; Monte Carlo Method ; Neural Networks, Computer ; particle therapy ; Photons ; Water</subject><ispartof>Medical physics (Lancaster), 2020-09, Vol.47 (9), p.3882-3891</ispartof><rights>2020 American Association of Physicists in Medicine</rights><rights>2020 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3872-dcb46679bdfd115a3e85d2cddd08641630555db3b6a05e8d0fea3fd4964f018a3</citedby><cites>FETCH-LOGICAL-c3872-dcb46679bdfd115a3e85d2cddd08641630555db3b6a05e8d0fea3fd4964f018a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.14372$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.14372$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32623747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yabe, Takuya</creatorcontrib><creatorcontrib>Yamamoto, Seiichi</creatorcontrib><creatorcontrib>Oda, Masahiro</creatorcontrib><creatorcontrib>Mori, Kensaku</creatorcontrib><creatorcontrib>Toshito, Toshiyuki</creatorcontrib><creatorcontrib>Akagi, Takashi</creatorcontrib><title>Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose
We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time‐consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN).
Methods
In this study, we adopted the U‐Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two‐dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U‐Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U‐Net model.
Results
All of the U‐Net model's predicted images were in good agreement with the MC‐calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images.
Conclusion
We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy.</description><subject>Cerenkov light</subject><subject>deep convolutional neural network</subject><subject>Luminescence</subject><subject>luminescence of water</subject><subject>Monte Carlo Method</subject><subject>Neural Networks, Computer</subject><subject>particle therapy</subject><subject>Photons</subject><subject>Water</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtP4zAUhS3ECMpD4hcgL9mkc-NX0iVCMDMSCBawjhz7uhiSONgJVVfz1ydtgVmxOtLVd490PkLOcpjnAOxn289zwQu2R2ZMFDwTDBb7ZAawEBkTIA_JUUovAKC4hANyyJlivBDFjPx9iGi9GXzoaHDUhoTU-jREX4_bo4uhpc3Y-g6Twc4g9a1e4gZe6QEjHZPvllRTi9hTE7r30Gw_dUM7HOM2hlWIr9SFSHsdB28apMMzRt2vT8gPp5uEpx95TJ5urh-vfme397_-XF3eZoaXBcusqYVSxaK2zua51BxLaZmx1kKpRK44SCltzWulQWJpwaHmzoqFEg7yUvNjcrHr7WN4GzENVeunPU2jOwxjqtikTE3qhPyPmhhSiuiqPk6b47rKodrortq-2uqe0POP1rFu0X6Bn34nINsBK9_g-tui6u5hV_gP3COLbQ</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Yabe, Takuya</creator><creator>Yamamoto, Seiichi</creator><creator>Oda, Masahiro</creator><creator>Mori, Kensaku</creator><creator>Toshito, Toshiyuki</creator><creator>Akagi, Takashi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202009</creationdate><title>Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy</title><author>Yabe, Takuya ; Yamamoto, Seiichi ; Oda, Masahiro ; Mori, Kensaku ; Toshito, Toshiyuki ; Akagi, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3872-dcb46679bdfd115a3e85d2cddd08641630555db3b6a05e8d0fea3fd4964f018a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cerenkov light</topic><topic>deep convolutional neural network</topic><topic>Luminescence</topic><topic>luminescence of water</topic><topic>Monte Carlo Method</topic><topic>Neural Networks, Computer</topic><topic>particle therapy</topic><topic>Photons</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yabe, Takuya</creatorcontrib><creatorcontrib>Yamamoto, Seiichi</creatorcontrib><creatorcontrib>Oda, Masahiro</creatorcontrib><creatorcontrib>Mori, Kensaku</creatorcontrib><creatorcontrib>Toshito, Toshiyuki</creatorcontrib><creatorcontrib>Akagi, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yabe, Takuya</au><au>Yamamoto, Seiichi</au><au>Oda, Masahiro</au><au>Mori, Kensaku</au><au>Toshito, Toshiyuki</au><au>Akagi, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2020-09</date><risdate>2020</risdate><volume>47</volume><issue>9</issue><spage>3882</spage><epage>3891</epage><pages>3882-3891</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose
We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time‐consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN).
Methods
In this study, we adopted the U‐Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two‐dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U‐Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U‐Net model.
Results
All of the U‐Net model's predicted images were in good agreement with the MC‐calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images.
Conclusion
We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy.</abstract><cop>United States</cop><pmid>32623747</pmid><doi>10.1002/mp.14372</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2020-09, Vol.47 (9), p.3882-3891 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_proquest_miscellaneous_2420647345 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Alma/SFX Local Collection |
subjects | Cerenkov light deep convolutional neural network Luminescence luminescence of water Monte Carlo Method Neural Networks, Computer particle therapy Photons Water |
title | Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20dose%20distribution%20from%20luminescence%20image%20of%20water%20using%20a%20deep%20convolutional%20neural%20network%20for%20particle%20therapy&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Yabe,%20Takuya&rft.date=2020-09&rft.volume=47&rft.issue=9&rft.spage=3882&rft.epage=3891&rft.pages=3882-3891&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.14372&rft_dat=%3Cproquest_cross%3E2420647345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420647345&rft_id=info:pmid/32623747&rfr_iscdi=true |