Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging

Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2020-10, Vol.74 (10), p.2184-2206
Hauptverfasser: Oaks, Jamie R., L’Bahy, Nadia, Cobb, Kerry A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2206
container_issue 10
container_start_page 2184
container_title Evolution
container_volume 74
creator Oaks, Jamie R.
L’Bahy, Nadia
Cobb, Kerry A.
description Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contract, expand, or fragment. Such processes predict temporally clustered evolutionary events across species, such as synchronous population divergences and/or changes in population size. There have been a number of methods developed to infer shared divergences or changes in population size, but not both, and the latter has been limited to approximate methods. We introduce a full-likelihood Bayesian method that uses genomic data to estimate temporal clustering of an arbitrary mix of population divergences and population-size changes across taxa. Using simulated data, we find that estimating the timing and sharing of demographic changes tends to be inaccurate and sensitive to prior assumptions, which is in contrast to accurate, precise, and robust estimates of shared divergence times. We also show that previous estimates of co-expansion among five Alaskan populations of three-spine sticklebacks (Gasterosteus aculeatus) were likely driven by prior assumptions and ignoring invariant characters. We conclude by discussing potential avenues to improve the estimation of synchronous demographic changes across populations.
doi_str_mv 10.1111/evo.14052
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2420155316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48594863</jstor_id><sourcerecordid>48594863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-285e1b1a792c583cf6f5bdb3478aee3e73794df5329856a18f693557b5254df83</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi3UChbooT-glaVeQGrAn4l9pAhaJCQupdfISca73jr21k5a7b_HdFkOleqLZeuZR-_MIPSekgtaziX8jhdUEMkO0IJKqSpZi_oNWhBCRcUVI0foOOc1IURLqg_REWc11UTQBZruQnbL1ZSxTXHEBi8hQDL-M7az95V3P8G7VYwD_mK2kJ0J2Gw2KZp-haeIXbCQkgtLnFcmwYBLFD9PLgaTtuUBYW8u3ji6Hg9mMqforTU-w7uX-wQ93t58v_5W3T98vbu-uq96QQmrmJJAO2oazXqpeG9rK7uh46JRBoBDwxstBis500rWhipbay5l00kmy7_iJ-hs5y2Bf82Qp3Z0uQfvTYA455YJRsq8OK0L-ukfdB3nFEq6QklCqS4TK9T5jupTzDmBbTfJjaXVlpL2eRVt6b_9u4rCfnwxzt0Iwyu5n30BLnfAH-dh-39Te_PjYa_8sKtY5ymm1wqhpBaq5vwJ8kechw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450119619</pqid></control><display><type>article</type><title>Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oaks, Jamie R. ; L’Bahy, Nadia ; Cobb, Kerry A.</creator><creatorcontrib>Oaks, Jamie R. ; L’Bahy, Nadia ; Cobb, Kerry A.</creatorcontrib><description>Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contract, expand, or fragment. Such processes predict temporally clustered evolutionary events across species, such as synchronous population divergences and/or changes in population size. There have been a number of methods developed to infer shared divergences or changes in population size, but not both, and the latter has been limited to approximate methods. We introduce a full-likelihood Bayesian method that uses genomic data to estimate temporal clustering of an arbitrary mix of population divergences and population-size changes across taxa. Using simulated data, we find that estimating the timing and sharing of demographic changes tends to be inaccurate and sensitive to prior assumptions, which is in contrast to accurate, precise, and robust estimates of shared divergence times. We also show that previous estimates of co-expansion among five Alaskan populations of three-spine sticklebacks (Gasterosteus aculeatus) were likely driven by prior assumptions and ignoring invariant characters. We conclude by discussing potential avenues to improve the estimation of synchronous demographic changes across populations.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/evo.14052</identifier><identifier>PMID: 32619041</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>Approximation ; Bayesian analysis ; Bayesian model choice ; Biogeography ; Clustering ; Demographics ; Dirichlet‐process prior ; Divergence ; Ecological effects ; Evolution ; Geographical distribution ; ORIGINAL ARTICLE ; phylogeography ; Population ; Population number ; Populations ; Species ; Spine</subject><ispartof>Evolution, 2020-10, Vol.74 (10), p.2184-2206</ispartof><rights>2020 The Authors. Evolution © 2020 The Society for the Study of Evolution</rights><rights>2020 The Authors. © 2020 The Society for the Study of Evolution.</rights><rights>2020 The Authors. Evolution © 2020 The Society for the Study of Evolution.</rights><rights>2020, Society for the Study of Evolution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-285e1b1a792c583cf6f5bdb3478aee3e73794df5329856a18f693557b5254df83</citedby><cites>FETCH-LOGICAL-c4102-285e1b1a792c583cf6f5bdb3478aee3e73794df5329856a18f693557b5254df83</cites><orcidid>0000-0003-0749-1570 ; 0000-0002-3757-3836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48594863$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48594863$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32619041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oaks, Jamie R.</creatorcontrib><creatorcontrib>L’Bahy, Nadia</creatorcontrib><creatorcontrib>Cobb, Kerry A.</creatorcontrib><title>Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contract, expand, or fragment. Such processes predict temporally clustered evolutionary events across species, such as synchronous population divergences and/or changes in population size. There have been a number of methods developed to infer shared divergences or changes in population size, but not both, and the latter has been limited to approximate methods. We introduce a full-likelihood Bayesian method that uses genomic data to estimate temporal clustering of an arbitrary mix of population divergences and population-size changes across taxa. Using simulated data, we find that estimating the timing and sharing of demographic changes tends to be inaccurate and sensitive to prior assumptions, which is in contrast to accurate, precise, and robust estimates of shared divergence times. We also show that previous estimates of co-expansion among five Alaskan populations of three-spine sticklebacks (Gasterosteus aculeatus) were likely driven by prior assumptions and ignoring invariant characters. We conclude by discussing potential avenues to improve the estimation of synchronous demographic changes across populations.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Bayesian model choice</subject><subject>Biogeography</subject><subject>Clustering</subject><subject>Demographics</subject><subject>Dirichlet‐process prior</subject><subject>Divergence</subject><subject>Ecological effects</subject><subject>Evolution</subject><subject>Geographical distribution</subject><subject>ORIGINAL ARTICLE</subject><subject>phylogeography</subject><subject>Population</subject><subject>Population number</subject><subject>Populations</subject><subject>Species</subject><subject>Spine</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhi3UChbooT-glaVeQGrAn4l9pAhaJCQupdfISca73jr21k5a7b_HdFkOleqLZeuZR-_MIPSekgtaziX8jhdUEMkO0IJKqSpZi_oNWhBCRcUVI0foOOc1IURLqg_REWc11UTQBZruQnbL1ZSxTXHEBi8hQDL-M7az95V3P8G7VYwD_mK2kJ0J2Gw2KZp-haeIXbCQkgtLnFcmwYBLFD9PLgaTtuUBYW8u3ji6Hg9mMqforTU-w7uX-wQ93t58v_5W3T98vbu-uq96QQmrmJJAO2oazXqpeG9rK7uh46JRBoBDwxstBis500rWhipbay5l00kmy7_iJ-hs5y2Bf82Qp3Z0uQfvTYA455YJRsq8OK0L-ukfdB3nFEq6QklCqS4TK9T5jupTzDmBbTfJjaXVlpL2eRVt6b_9u4rCfnwxzt0Iwyu5n30BLnfAH-dh-39Te_PjYa_8sKtY5ymm1wqhpBaq5vwJ8kechw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Oaks, Jamie R.</creator><creator>L’Bahy, Nadia</creator><creator>Cobb, Kerry A.</creator><general>Wiley</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0749-1570</orcidid><orcidid>https://orcid.org/0000-0002-3757-3836</orcidid></search><sort><creationdate>20201001</creationdate><title>Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data</title><author>Oaks, Jamie R. ; L’Bahy, Nadia ; Cobb, Kerry A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-285e1b1a792c583cf6f5bdb3478aee3e73794df5329856a18f693557b5254df83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Bayesian model choice</topic><topic>Biogeography</topic><topic>Clustering</topic><topic>Demographics</topic><topic>Dirichlet‐process prior</topic><topic>Divergence</topic><topic>Ecological effects</topic><topic>Evolution</topic><topic>Geographical distribution</topic><topic>ORIGINAL ARTICLE</topic><topic>phylogeography</topic><topic>Population</topic><topic>Population number</topic><topic>Populations</topic><topic>Species</topic><topic>Spine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oaks, Jamie R.</creatorcontrib><creatorcontrib>L’Bahy, Nadia</creatorcontrib><creatorcontrib>Cobb, Kerry A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oaks, Jamie R.</au><au>L’Bahy, Nadia</au><au>Cobb, Kerry A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>74</volume><issue>10</issue><spage>2184</spage><epage>2206</epage><pages>2184-2206</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contract, expand, or fragment. Such processes predict temporally clustered evolutionary events across species, such as synchronous population divergences and/or changes in population size. There have been a number of methods developed to infer shared divergences or changes in population size, but not both, and the latter has been limited to approximate methods. We introduce a full-likelihood Bayesian method that uses genomic data to estimate temporal clustering of an arbitrary mix of population divergences and population-size changes across taxa. Using simulated data, we find that estimating the timing and sharing of demographic changes tends to be inaccurate and sensitive to prior assumptions, which is in contrast to accurate, precise, and robust estimates of shared divergence times. We also show that previous estimates of co-expansion among five Alaskan populations of three-spine sticklebacks (Gasterosteus aculeatus) were likely driven by prior assumptions and ignoring invariant characters. We conclude by discussing potential avenues to improve the estimation of synchronous demographic changes across populations.</abstract><cop>United States</cop><pub>Wiley</pub><pmid>32619041</pmid><doi>10.1111/evo.14052</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0749-1570</orcidid><orcidid>https://orcid.org/0000-0002-3757-3836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-3820
ispartof Evolution, 2020-10, Vol.74 (10), p.2184-2206
issn 0014-3820
1558-5646
language eng
recordid cdi_proquest_miscellaneous_2420155316
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete
subjects Approximation
Bayesian analysis
Bayesian model choice
Biogeography
Clustering
Demographics
Dirichlet‐process prior
Divergence
Ecological effects
Evolution
Geographical distribution
ORIGINAL ARTICLE
phylogeography
Population
Population number
Populations
Species
Spine
title Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20from%20a%20general,%20full-likelihood%20Bayesian%20approach%20to%20inferring%20shared%20evolutionary%20events%20from%20genomic%20data:%20Inferring%20shared%20demographic%20events%20is%20challenging&rft.jtitle=Evolution&rft.au=Oaks,%20Jamie%20R.&rft.date=2020-10-01&rft.volume=74&rft.issue=10&rft.spage=2184&rft.epage=2206&rft.pages=2184-2206&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/evo.14052&rft_dat=%3Cjstor_proqu%3E48594863%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450119619&rft_id=info:pmid/32619041&rft_jstor_id=48594863&rfr_iscdi=true