Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging
Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contra...
Gespeichert in:
Veröffentlicht in: | Evolution 2020-10, Vol.74 (10), p.2184-2206 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2206 |
---|---|
container_issue | 10 |
container_start_page | 2184 |
container_title | Evolution |
container_volume | 74 |
creator | Oaks, Jamie R. L’Bahy, Nadia Cobb, Kerry A. |
description | Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contract, expand, or fragment. Such processes predict temporally clustered evolutionary events across species, such as synchronous population divergences and/or changes in population size. There have been a number of methods developed to infer shared divergences or changes in population size, but not both, and the latter has been limited to approximate methods. We introduce a full-likelihood Bayesian method that uses genomic data to estimate temporal clustering of an arbitrary mix of population divergences and population-size changes across taxa. Using simulated data, we find that estimating the timing and sharing of demographic changes tends to be inaccurate and sensitive to prior assumptions, which is in contrast to accurate, precise, and robust estimates of shared divergence times. We also show that previous estimates of co-expansion among five Alaskan populations of three-spine sticklebacks (Gasterosteus aculeatus) were likely driven by prior assumptions and ignoring invariant characters. We conclude by discussing potential avenues to improve the estimation of synchronous demographic changes across populations. |
doi_str_mv | 10.1111/evo.14052 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2420155316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48594863</jstor_id><sourcerecordid>48594863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-285e1b1a792c583cf6f5bdb3478aee3e73794df5329856a18f693557b5254df83</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi3UChbooT-glaVeQGrAn4l9pAhaJCQupdfISca73jr21k5a7b_HdFkOleqLZeuZR-_MIPSekgtaziX8jhdUEMkO0IJKqSpZi_oNWhBCRcUVI0foOOc1IURLqg_REWc11UTQBZruQnbL1ZSxTXHEBi8hQDL-M7az95V3P8G7VYwD_mK2kJ0J2Gw2KZp-haeIXbCQkgtLnFcmwYBLFD9PLgaTtuUBYW8u3ji6Hg9mMqforTU-w7uX-wQ93t58v_5W3T98vbu-uq96QQmrmJJAO2oazXqpeG9rK7uh46JRBoBDwxstBis500rWhipbay5l00kmy7_iJ-hs5y2Bf82Qp3Z0uQfvTYA455YJRsq8OK0L-ukfdB3nFEq6QklCqS4TK9T5jupTzDmBbTfJjaXVlpL2eRVt6b_9u4rCfnwxzt0Iwyu5n30BLnfAH-dh-39Te_PjYa_8sKtY5ymm1wqhpBaq5vwJ8kechw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450119619</pqid></control><display><type>article</type><title>Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oaks, Jamie R. ; L’Bahy, Nadia ; Cobb, Kerry A.</creator><creatorcontrib>Oaks, Jamie R. ; L’Bahy, Nadia ; Cobb, Kerry A.</creatorcontrib><description>Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contract, expand, or fragment. Such processes predict temporally clustered evolutionary events across species, such as synchronous population divergences and/or changes in population size. There have been a number of methods developed to infer shared divergences or changes in population size, but not both, and the latter has been limited to approximate methods. We introduce a full-likelihood Bayesian method that uses genomic data to estimate temporal clustering of an arbitrary mix of population divergences and population-size changes across taxa. Using simulated data, we find that estimating the timing and sharing of demographic changes tends to be inaccurate and sensitive to prior assumptions, which is in contrast to accurate, precise, and robust estimates of shared divergence times. We also show that previous estimates of co-expansion among five Alaskan populations of three-spine sticklebacks (Gasterosteus aculeatus) were likely driven by prior assumptions and ignoring invariant characters. We conclude by discussing potential avenues to improve the estimation of synchronous demographic changes across populations.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/evo.14052</identifier><identifier>PMID: 32619041</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>Approximation ; Bayesian analysis ; Bayesian model choice ; Biogeography ; Clustering ; Demographics ; Dirichlet‐process prior ; Divergence ; Ecological effects ; Evolution ; Geographical distribution ; ORIGINAL ARTICLE ; phylogeography ; Population ; Population number ; Populations ; Species ; Spine</subject><ispartof>Evolution, 2020-10, Vol.74 (10), p.2184-2206</ispartof><rights>2020 The Authors. Evolution © 2020 The Society for the Study of Evolution</rights><rights>2020 The Authors. © 2020 The Society for the Study of Evolution.</rights><rights>2020 The Authors. Evolution © 2020 The Society for the Study of Evolution.</rights><rights>2020, Society for the Study of Evolution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-285e1b1a792c583cf6f5bdb3478aee3e73794df5329856a18f693557b5254df83</citedby><cites>FETCH-LOGICAL-c4102-285e1b1a792c583cf6f5bdb3478aee3e73794df5329856a18f693557b5254df83</cites><orcidid>0000-0003-0749-1570 ; 0000-0002-3757-3836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48594863$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48594863$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32619041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oaks, Jamie R.</creatorcontrib><creatorcontrib>L’Bahy, Nadia</creatorcontrib><creatorcontrib>Cobb, Kerry A.</creatorcontrib><title>Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contract, expand, or fragment. Such processes predict temporally clustered evolutionary events across species, such as synchronous population divergences and/or changes in population size. There have been a number of methods developed to infer shared divergences or changes in population size, but not both, and the latter has been limited to approximate methods. We introduce a full-likelihood Bayesian method that uses genomic data to estimate temporal clustering of an arbitrary mix of population divergences and population-size changes across taxa. Using simulated data, we find that estimating the timing and sharing of demographic changes tends to be inaccurate and sensitive to prior assumptions, which is in contrast to accurate, precise, and robust estimates of shared divergence times. We also show that previous estimates of co-expansion among five Alaskan populations of three-spine sticklebacks (Gasterosteus aculeatus) were likely driven by prior assumptions and ignoring invariant characters. We conclude by discussing potential avenues to improve the estimation of synchronous demographic changes across populations.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Bayesian model choice</subject><subject>Biogeography</subject><subject>Clustering</subject><subject>Demographics</subject><subject>Dirichlet‐process prior</subject><subject>Divergence</subject><subject>Ecological effects</subject><subject>Evolution</subject><subject>Geographical distribution</subject><subject>ORIGINAL ARTICLE</subject><subject>phylogeography</subject><subject>Population</subject><subject>Population number</subject><subject>Populations</subject><subject>Species</subject><subject>Spine</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhi3UChbooT-glaVeQGrAn4l9pAhaJCQupdfISca73jr21k5a7b_HdFkOleqLZeuZR-_MIPSekgtaziX8jhdUEMkO0IJKqSpZi_oNWhBCRcUVI0foOOc1IURLqg_REWc11UTQBZruQnbL1ZSxTXHEBi8hQDL-M7az95V3P8G7VYwD_mK2kJ0J2Gw2KZp-haeIXbCQkgtLnFcmwYBLFD9PLgaTtuUBYW8u3ji6Hg9mMqforTU-w7uX-wQ93t58v_5W3T98vbu-uq96QQmrmJJAO2oazXqpeG9rK7uh46JRBoBDwxstBis500rWhipbay5l00kmy7_iJ-hs5y2Bf82Qp3Z0uQfvTYA455YJRsq8OK0L-ukfdB3nFEq6QklCqS4TK9T5jupTzDmBbTfJjaXVlpL2eRVt6b_9u4rCfnwxzt0Iwyu5n30BLnfAH-dh-39Te_PjYa_8sKtY5ymm1wqhpBaq5vwJ8kechw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Oaks, Jamie R.</creator><creator>L’Bahy, Nadia</creator><creator>Cobb, Kerry A.</creator><general>Wiley</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0749-1570</orcidid><orcidid>https://orcid.org/0000-0002-3757-3836</orcidid></search><sort><creationdate>20201001</creationdate><title>Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data</title><author>Oaks, Jamie R. ; L’Bahy, Nadia ; Cobb, Kerry A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-285e1b1a792c583cf6f5bdb3478aee3e73794df5329856a18f693557b5254df83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Bayesian model choice</topic><topic>Biogeography</topic><topic>Clustering</topic><topic>Demographics</topic><topic>Dirichlet‐process prior</topic><topic>Divergence</topic><topic>Ecological effects</topic><topic>Evolution</topic><topic>Geographical distribution</topic><topic>ORIGINAL ARTICLE</topic><topic>phylogeography</topic><topic>Population</topic><topic>Population number</topic><topic>Populations</topic><topic>Species</topic><topic>Spine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oaks, Jamie R.</creatorcontrib><creatorcontrib>L’Bahy, Nadia</creatorcontrib><creatorcontrib>Cobb, Kerry A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oaks, Jamie R.</au><au>L’Bahy, Nadia</au><au>Cobb, Kerry A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>74</volume><issue>10</issue><spage>2184</spage><epage>2206</epage><pages>2184-2206</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Factors that influence the distribution, abundance, and diversification of species can simultaneously affect multiple evolutionary lineages within or across communities. These include changes to the environment or inter-specific ecological interactions that cause ranges of multiple species to contract, expand, or fragment. Such processes predict temporally clustered evolutionary events across species, such as synchronous population divergences and/or changes in population size. There have been a number of methods developed to infer shared divergences or changes in population size, but not both, and the latter has been limited to approximate methods. We introduce a full-likelihood Bayesian method that uses genomic data to estimate temporal clustering of an arbitrary mix of population divergences and population-size changes across taxa. Using simulated data, we find that estimating the timing and sharing of demographic changes tends to be inaccurate and sensitive to prior assumptions, which is in contrast to accurate, precise, and robust estimates of shared divergence times. We also show that previous estimates of co-expansion among five Alaskan populations of three-spine sticklebacks (Gasterosteus aculeatus) were likely driven by prior assumptions and ignoring invariant characters. We conclude by discussing potential avenues to improve the estimation of synchronous demographic changes across populations.</abstract><cop>United States</cop><pub>Wiley</pub><pmid>32619041</pmid><doi>10.1111/evo.14052</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0749-1570</orcidid><orcidid>https://orcid.org/0000-0002-3757-3836</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3820 |
ispartof | Evolution, 2020-10, Vol.74 (10), p.2184-2206 |
issn | 0014-3820 1558-5646 |
language | eng |
recordid | cdi_proquest_miscellaneous_2420155316 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete |
subjects | Approximation Bayesian analysis Bayesian model choice Biogeography Clustering Demographics Dirichlet‐process prior Divergence Ecological effects Evolution Geographical distribution ORIGINAL ARTICLE phylogeography Population Population number Populations Species Spine |
title | Insights from a general, full-likelihood Bayesian approach to inferring shared evolutionary events from genomic data: Inferring shared demographic events is challenging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20from%20a%20general,%20full-likelihood%20Bayesian%20approach%20to%20inferring%20shared%20evolutionary%20events%20from%20genomic%20data:%20Inferring%20shared%20demographic%20events%20is%20challenging&rft.jtitle=Evolution&rft.au=Oaks,%20Jamie%20R.&rft.date=2020-10-01&rft.volume=74&rft.issue=10&rft.spage=2184&rft.epage=2206&rft.pages=2184-2206&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/evo.14052&rft_dat=%3Cjstor_proqu%3E48594863%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450119619&rft_id=info:pmid/32619041&rft_jstor_id=48594863&rfr_iscdi=true |