Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes

Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell host & microbe 2020-08, Vol.28 (2), p.258-272.e6
Hauptverfasser: Reitmeier, Sandra, Kiessling, Silke, Clavel, Thomas, List, Markus, Almeida, Eduardo L., Ghosh, Tarini S., Neuhaus, Klaus, Grallert, Harald, Linseisen, Jakob, Skurk, Thomas, Brandl, Beate, Breuninger, Taylor A., Troll, Martina, Rathmann, Wolfgang, Linkohr, Birgit, Hauner, Hans, Laudes, Matthias, Franke, Andre, Le Roy, Caroline I., Bell, Jordana T., Spector, Tim, Baumbach, Jan, O’Toole, Paul W., Peters, Annette, Haller, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272.e6
container_issue 2
container_start_page 258
container_title Cell host & microbe
container_volume 28
creator Reitmeier, Sandra
Kiessling, Silke
Clavel, Thomas
List, Markus
Almeida, Eduardo L.
Ghosh, Tarini S.
Neuhaus, Klaus
Grallert, Harald
Linseisen, Jakob
Skurk, Thomas
Brandl, Beate
Breuninger, Taylor A.
Troll, Martina
Rathmann, Wolfgang
Linkohr, Birgit
Hauner, Hans
Laudes, Matthias
Franke, Andre
Le Roy, Caroline I.
Bell, Jordana T.
Spector, Tim
Baumbach, Jan
O’Toole, Paul W.
Peters, Annette
Haller, Dirk
description Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases. [Display omitted] •Human gut microbiome exhibits diurnal rhythmicity across populations and individuals•Obese and T2D individuals show disrupted circadian rhythms in the gut microbiome•Arrhytmic bacterial signatures contribute to risk classification and prediction of T2D•These risk signatures show regional differences in applicability across three cohorts Reitmeier et al. show that specific gut microbes exhibit rhythmic oscillations in relative abundance and identified taxa with disrupted rhythmicity in individuals with type 2 diabetes (T2D). This arrhythmic signature contributed to the classification and prediction of T2D, suggesting functional links between circadian rhythmicity and the microbiome in metabolic diseases.
doi_str_mv 10.1016/j.chom.2020.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2420141904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1931312820303437</els_id><sourcerecordid>2420141904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-5498ac1034eb1a06f6b7d180ecafeb8877131c97c30d9ffc2a056e15bffab7833</originalsourceid><addsrcrecordid>eNp9kEtP6zAQhS0E4v0HWFx5ySZhxnGcRGKDeEsgEI-15TjjW5emKXaC1H9PSoElq5nFd450PsaOEFIEVCfT1E66NhUgIAWVAsgNtotVJhMFqtr8-jHJUJQ7bC_GKUCeQ4HbbCcTCispYZddnIUwWfaT1lt-PfT83tvQ1b5riT_7_3PTD4EifwzUeNvzJx_feOf4y3JBXPALb2rqKR6wLWdmkQ6_7z57vbp8Ob9J7h6ub8_P7hIrleqTXFalsQiZpBoNKKfqosESyBpHdVkWBWZoq8Jm0FTOWWEgV4R57ZypizLL9tnxuncRuveBYq9bHy3NZmZO3RC1kAJQYgVyRMUaHefEGMjpRfCtCUuNoFf29FSv7OmVPQ1Kw1fo33f_ULfU_EZ-dI3A6RqgceWHp6Cj9TS3o51AttdN5__q_wS_E3_L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420141904</pqid></control><display><type>article</type><title>Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Reitmeier, Sandra ; Kiessling, Silke ; Clavel, Thomas ; List, Markus ; Almeida, Eduardo L. ; Ghosh, Tarini S. ; Neuhaus, Klaus ; Grallert, Harald ; Linseisen, Jakob ; Skurk, Thomas ; Brandl, Beate ; Breuninger, Taylor A. ; Troll, Martina ; Rathmann, Wolfgang ; Linkohr, Birgit ; Hauner, Hans ; Laudes, Matthias ; Franke, Andre ; Le Roy, Caroline I. ; Bell, Jordana T. ; Spector, Tim ; Baumbach, Jan ; O’Toole, Paul W. ; Peters, Annette ; Haller, Dirk</creator><creatorcontrib>Reitmeier, Sandra ; Kiessling, Silke ; Clavel, Thomas ; List, Markus ; Almeida, Eduardo L. ; Ghosh, Tarini S. ; Neuhaus, Klaus ; Grallert, Harald ; Linseisen, Jakob ; Skurk, Thomas ; Brandl, Beate ; Breuninger, Taylor A. ; Troll, Martina ; Rathmann, Wolfgang ; Linkohr, Birgit ; Hauner, Hans ; Laudes, Matthias ; Franke, Andre ; Le Roy, Caroline I. ; Bell, Jordana T. ; Spector, Tim ; Baumbach, Jan ; O’Toole, Paul W. ; Peters, Annette ; Haller, Dirk</creatorcontrib><description>Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases. [Display omitted] •Human gut microbiome exhibits diurnal rhythmicity across populations and individuals•Obese and T2D individuals show disrupted circadian rhythms in the gut microbiome•Arrhytmic bacterial signatures contribute to risk classification and prediction of T2D•These risk signatures show regional differences in applicability across three cohorts Reitmeier et al. show that specific gut microbes exhibit rhythmic oscillations in relative abundance and identified taxa with disrupted rhythmicity in individuals with type 2 diabetes (T2D). This arrhythmic signature contributed to the classification and prediction of T2D, suggesting functional links between circadian rhythmicity and the microbiome in metabolic diseases.</description><identifier>ISSN: 1931-3128</identifier><identifier>EISSN: 1934-6069</identifier><identifier>DOI: 10.1016/j.chom.2020.06.004</identifier><identifier>PMID: 32619440</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>amplicon sequencing ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacteria - metabolism ; Circadian Clocks - physiology ; Circadian Rhythm - physiology ; circadian rhythms ; Diabetes Mellitus, Type 2 - epidemiology ; Diabetes Mellitus, Type 2 - microbiology ; Diabetes Mellitus, Type 2 - pathology ; diurnal oscillations ; Feces - microbiology ; Gastrointestinal Microbiome - genetics ; Gastrointestinal Microbiome - physiology ; Germany - epidemiology ; human intestinal microbiota ; Humans ; machine learning ; Metagenome - genetics ; metagenomics ; Metagenomics - methods ; obesity ; Obesity - microbiology ; Obesity - pathology ; population-based cohorts ; prediction ; type 2 diabetes</subject><ispartof>Cell host &amp; microbe, 2020-08, Vol.28 (2), p.258-272.e6</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-5498ac1034eb1a06f6b7d180ecafeb8877131c97c30d9ffc2a056e15bffab7833</citedby><cites>FETCH-LOGICAL-c466t-5498ac1034eb1a06f6b7d180ecafeb8877131c97c30d9ffc2a056e15bffab7833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1931312820303437$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32619440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reitmeier, Sandra</creatorcontrib><creatorcontrib>Kiessling, Silke</creatorcontrib><creatorcontrib>Clavel, Thomas</creatorcontrib><creatorcontrib>List, Markus</creatorcontrib><creatorcontrib>Almeida, Eduardo L.</creatorcontrib><creatorcontrib>Ghosh, Tarini S.</creatorcontrib><creatorcontrib>Neuhaus, Klaus</creatorcontrib><creatorcontrib>Grallert, Harald</creatorcontrib><creatorcontrib>Linseisen, Jakob</creatorcontrib><creatorcontrib>Skurk, Thomas</creatorcontrib><creatorcontrib>Brandl, Beate</creatorcontrib><creatorcontrib>Breuninger, Taylor A.</creatorcontrib><creatorcontrib>Troll, Martina</creatorcontrib><creatorcontrib>Rathmann, Wolfgang</creatorcontrib><creatorcontrib>Linkohr, Birgit</creatorcontrib><creatorcontrib>Hauner, Hans</creatorcontrib><creatorcontrib>Laudes, Matthias</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Le Roy, Caroline I.</creatorcontrib><creatorcontrib>Bell, Jordana T.</creatorcontrib><creatorcontrib>Spector, Tim</creatorcontrib><creatorcontrib>Baumbach, Jan</creatorcontrib><creatorcontrib>O’Toole, Paul W.</creatorcontrib><creatorcontrib>Peters, Annette</creatorcontrib><creatorcontrib>Haller, Dirk</creatorcontrib><title>Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes</title><title>Cell host &amp; microbe</title><addtitle>Cell Host Microbe</addtitle><description>Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases. [Display omitted] •Human gut microbiome exhibits diurnal rhythmicity across populations and individuals•Obese and T2D individuals show disrupted circadian rhythms in the gut microbiome•Arrhytmic bacterial signatures contribute to risk classification and prediction of T2D•These risk signatures show regional differences in applicability across three cohorts Reitmeier et al. show that specific gut microbes exhibit rhythmic oscillations in relative abundance and identified taxa with disrupted rhythmicity in individuals with type 2 diabetes (T2D). This arrhythmic signature contributed to the classification and prediction of T2D, suggesting functional links between circadian rhythmicity and the microbiome in metabolic diseases.</description><subject>amplicon sequencing</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacteria - metabolism</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian Rhythm - physiology</subject><subject>circadian rhythms</subject><subject>Diabetes Mellitus, Type 2 - epidemiology</subject><subject>Diabetes Mellitus, Type 2 - microbiology</subject><subject>Diabetes Mellitus, Type 2 - pathology</subject><subject>diurnal oscillations</subject><subject>Feces - microbiology</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Germany - epidemiology</subject><subject>human intestinal microbiota</subject><subject>Humans</subject><subject>machine learning</subject><subject>Metagenome - genetics</subject><subject>metagenomics</subject><subject>Metagenomics - methods</subject><subject>obesity</subject><subject>Obesity - microbiology</subject><subject>Obesity - pathology</subject><subject>population-based cohorts</subject><subject>prediction</subject><subject>type 2 diabetes</subject><issn>1931-3128</issn><issn>1934-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtP6zAQhS0E4v0HWFx5ySZhxnGcRGKDeEsgEI-15TjjW5emKXaC1H9PSoElq5nFd450PsaOEFIEVCfT1E66NhUgIAWVAsgNtotVJhMFqtr8-jHJUJQ7bC_GKUCeQ4HbbCcTCispYZddnIUwWfaT1lt-PfT83tvQ1b5riT_7_3PTD4EifwzUeNvzJx_feOf4y3JBXPALb2rqKR6wLWdmkQ6_7z57vbp8Ob9J7h6ub8_P7hIrleqTXFalsQiZpBoNKKfqosESyBpHdVkWBWZoq8Jm0FTOWWEgV4R57ZypizLL9tnxuncRuveBYq9bHy3NZmZO3RC1kAJQYgVyRMUaHefEGMjpRfCtCUuNoFf29FSv7OmVPQ1Kw1fo33f_ULfU_EZ-dI3A6RqgceWHp6Cj9TS3o51AttdN5__q_wS_E3_L</recordid><startdate>20200812</startdate><enddate>20200812</enddate><creator>Reitmeier, Sandra</creator><creator>Kiessling, Silke</creator><creator>Clavel, Thomas</creator><creator>List, Markus</creator><creator>Almeida, Eduardo L.</creator><creator>Ghosh, Tarini S.</creator><creator>Neuhaus, Klaus</creator><creator>Grallert, Harald</creator><creator>Linseisen, Jakob</creator><creator>Skurk, Thomas</creator><creator>Brandl, Beate</creator><creator>Breuninger, Taylor A.</creator><creator>Troll, Martina</creator><creator>Rathmann, Wolfgang</creator><creator>Linkohr, Birgit</creator><creator>Hauner, Hans</creator><creator>Laudes, Matthias</creator><creator>Franke, Andre</creator><creator>Le Roy, Caroline I.</creator><creator>Bell, Jordana T.</creator><creator>Spector, Tim</creator><creator>Baumbach, Jan</creator><creator>O’Toole, Paul W.</creator><creator>Peters, Annette</creator><creator>Haller, Dirk</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200812</creationdate><title>Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes</title><author>Reitmeier, Sandra ; Kiessling, Silke ; Clavel, Thomas ; List, Markus ; Almeida, Eduardo L. ; Ghosh, Tarini S. ; Neuhaus, Klaus ; Grallert, Harald ; Linseisen, Jakob ; Skurk, Thomas ; Brandl, Beate ; Breuninger, Taylor A. ; Troll, Martina ; Rathmann, Wolfgang ; Linkohr, Birgit ; Hauner, Hans ; Laudes, Matthias ; Franke, Andre ; Le Roy, Caroline I. ; Bell, Jordana T. ; Spector, Tim ; Baumbach, Jan ; O’Toole, Paul W. ; Peters, Annette ; Haller, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-5498ac1034eb1a06f6b7d180ecafeb8877131c97c30d9ffc2a056e15bffab7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>amplicon sequencing</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacteria - metabolism</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian Rhythm - physiology</topic><topic>circadian rhythms</topic><topic>Diabetes Mellitus, Type 2 - epidemiology</topic><topic>Diabetes Mellitus, Type 2 - microbiology</topic><topic>Diabetes Mellitus, Type 2 - pathology</topic><topic>diurnal oscillations</topic><topic>Feces - microbiology</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Germany - epidemiology</topic><topic>human intestinal microbiota</topic><topic>Humans</topic><topic>machine learning</topic><topic>Metagenome - genetics</topic><topic>metagenomics</topic><topic>Metagenomics - methods</topic><topic>obesity</topic><topic>Obesity - microbiology</topic><topic>Obesity - pathology</topic><topic>population-based cohorts</topic><topic>prediction</topic><topic>type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reitmeier, Sandra</creatorcontrib><creatorcontrib>Kiessling, Silke</creatorcontrib><creatorcontrib>Clavel, Thomas</creatorcontrib><creatorcontrib>List, Markus</creatorcontrib><creatorcontrib>Almeida, Eduardo L.</creatorcontrib><creatorcontrib>Ghosh, Tarini S.</creatorcontrib><creatorcontrib>Neuhaus, Klaus</creatorcontrib><creatorcontrib>Grallert, Harald</creatorcontrib><creatorcontrib>Linseisen, Jakob</creatorcontrib><creatorcontrib>Skurk, Thomas</creatorcontrib><creatorcontrib>Brandl, Beate</creatorcontrib><creatorcontrib>Breuninger, Taylor A.</creatorcontrib><creatorcontrib>Troll, Martina</creatorcontrib><creatorcontrib>Rathmann, Wolfgang</creatorcontrib><creatorcontrib>Linkohr, Birgit</creatorcontrib><creatorcontrib>Hauner, Hans</creatorcontrib><creatorcontrib>Laudes, Matthias</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Le Roy, Caroline I.</creatorcontrib><creatorcontrib>Bell, Jordana T.</creatorcontrib><creatorcontrib>Spector, Tim</creatorcontrib><creatorcontrib>Baumbach, Jan</creatorcontrib><creatorcontrib>O’Toole, Paul W.</creatorcontrib><creatorcontrib>Peters, Annette</creatorcontrib><creatorcontrib>Haller, Dirk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell host &amp; microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reitmeier, Sandra</au><au>Kiessling, Silke</au><au>Clavel, Thomas</au><au>List, Markus</au><au>Almeida, Eduardo L.</au><au>Ghosh, Tarini S.</au><au>Neuhaus, Klaus</au><au>Grallert, Harald</au><au>Linseisen, Jakob</au><au>Skurk, Thomas</au><au>Brandl, Beate</au><au>Breuninger, Taylor A.</au><au>Troll, Martina</au><au>Rathmann, Wolfgang</au><au>Linkohr, Birgit</au><au>Hauner, Hans</au><au>Laudes, Matthias</au><au>Franke, Andre</au><au>Le Roy, Caroline I.</au><au>Bell, Jordana T.</au><au>Spector, Tim</au><au>Baumbach, Jan</au><au>O’Toole, Paul W.</au><au>Peters, Annette</au><au>Haller, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes</atitle><jtitle>Cell host &amp; microbe</jtitle><addtitle>Cell Host Microbe</addtitle><date>2020-08-12</date><risdate>2020</risdate><volume>28</volume><issue>2</issue><spage>258</spage><epage>272.e6</epage><pages>258-272.e6</pages><issn>1931-3128</issn><eissn>1934-6069</eissn><abstract>Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases. [Display omitted] •Human gut microbiome exhibits diurnal rhythmicity across populations and individuals•Obese and T2D individuals show disrupted circadian rhythms in the gut microbiome•Arrhytmic bacterial signatures contribute to risk classification and prediction of T2D•These risk signatures show regional differences in applicability across three cohorts Reitmeier et al. show that specific gut microbes exhibit rhythmic oscillations in relative abundance and identified taxa with disrupted rhythmicity in individuals with type 2 diabetes (T2D). This arrhythmic signature contributed to the classification and prediction of T2D, suggesting functional links between circadian rhythmicity and the microbiome in metabolic diseases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32619440</pmid><doi>10.1016/j.chom.2020.06.004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-3128
ispartof Cell host & microbe, 2020-08, Vol.28 (2), p.258-272.e6
issn 1931-3128
1934-6069
language eng
recordid cdi_proquest_miscellaneous_2420141904
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects amplicon sequencing
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Bacteria - metabolism
Circadian Clocks - physiology
Circadian Rhythm - physiology
circadian rhythms
Diabetes Mellitus, Type 2 - epidemiology
Diabetes Mellitus, Type 2 - microbiology
Diabetes Mellitus, Type 2 - pathology
diurnal oscillations
Feces - microbiology
Gastrointestinal Microbiome - genetics
Gastrointestinal Microbiome - physiology
Germany - epidemiology
human intestinal microbiota
Humans
machine learning
Metagenome - genetics
metagenomics
Metagenomics - methods
obesity
Obesity - microbiology
Obesity - pathology
population-based cohorts
prediction
type 2 diabetes
title Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arrhythmic%20Gut%20Microbiome%20Signatures%20Predict%20Risk%20of%20Type%202%20Diabetes&rft.jtitle=Cell%20host%20&%20microbe&rft.au=Reitmeier,%20Sandra&rft.date=2020-08-12&rft.volume=28&rft.issue=2&rft.spage=258&rft.epage=272.e6&rft.pages=258-272.e6&rft.issn=1931-3128&rft.eissn=1934-6069&rft_id=info:doi/10.1016/j.chom.2020.06.004&rft_dat=%3Cproquest_cross%3E2420141904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420141904&rft_id=info:pmid/32619440&rft_els_id=S1931312820303437&rfr_iscdi=true