Machine Learning Applied to Registry Data: Development of a Patient-Specific Prediction Model for Blood Transfusion Requirements During Craniofacial Surgery Using the Pediatric Craniofacial Perioperative Registry Dataset

BACKGROUND:Craniosynostosis is the premature fusion of ≥1 cranial sutures and often requires surgical intervention. Surgery may involve extensive osteotomies, which can lead to substantial blood loss. Currently, there are no consensus recommendations for guiding blood conservation or transfusion in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesia and analgesia 2021-01, Vol.132 (1), p.160-171
Hauptverfasser: Jalali, Ali, Lonsdale, Hannah, Zamora, Lillian V., Ahumada, Luis, Nguyen, Anh Thy H., Rehman, Mohamed, Fackler, James, Stricker, Paul A., Fernandez, Allison M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 1
container_start_page 160
container_title Anesthesia and analgesia
container_volume 132
creator Jalali, Ali
Lonsdale, Hannah
Zamora, Lillian V.
Ahumada, Luis
Nguyen, Anh Thy H.
Rehman, Mohamed
Fackler, James
Stricker, Paul A.
Fernandez, Allison M.
description BACKGROUND:Craniosynostosis is the premature fusion of ≥1 cranial sutures and often requires surgical intervention. Surgery may involve extensive osteotomies, which can lead to substantial blood loss. Currently, there are no consensus recommendations for guiding blood conservation or transfusion in this patient population. The aim of this study is to develop a machine-learning model to predict blood product transfusion requirements for individual pediatric patients undergoing craniofacial surgery. METHODS:Using data from 2143 patients in the Pediatric Craniofacial Surgery Perioperative Registry, we assessed 6 machine-learning classification and regression models based on random forest, adaptive boosting (AdaBoost), neural network, gradient boosting machine (GBM), support vector machine, and elastic net methods with inputs from 22 demographic and preoperative features. We developed classification models to predict an individual’s overall need for transfusion and regression models to predict the number of blood product units to be ordered preoperatively. The study is reported according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist for prediction model development. RESULTS:The GBM performed best in both domains, with an area under receiver operating characteristic curve of 0.87 ± 0.03 (95% confidence interval) and F-score of 0.91 ± 0.04 for classification, and a mean squared error of 1.15 ± 0.12, R-squared (R) of 0.73 ± 0.02, and root mean squared error of 1.05 ± 0.06 for regression. GBM feature ranking determined that the following variables held the most information for predictionplatelet count, weight, preoperative hematocrit, surgical volume per institution, age, and preoperative hemoglobin. We then produced a calculator to show the number of units of blood that should be ordered preoperatively for an individual patient. CONCLUSIONS:Anesthesiologists and surgeons can use this continually evolving predictive model to improve clinical care of patients presenting for craniosynostosis surgery.
doi_str_mv 10.1213/ANE.0000000000004988
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2420135696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420135696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4478-e8fdbf69d635faf6ac6a4f46ee6257a7b403fe8152e080d960ad05d1aabfc53</originalsourceid><addsrcrecordid>eNqFUt1u0zAUthCIlcEbIORLbjIcx3ET7kq7waQOqnVcR6fxcWtw48x2Nu1deRicdSDGBViyrOPz_Rz5MyGvc3aS87x4N_t8esL-WKKuqidkkpdcZtOyrp6SSbotMl7X9RF5EcK3VOasks_JUcFlXkkuJuTHBbQ70yFdIvjOdFs663trUNHo6CVuTYj-ji4gwnu6wBu0rt9jF6nTFOgKoklFtu6xNdq0dOVRmTYa19ELp9BS7Tz9YJ1T9MpDF_QQxt4lXg_G4ygU6GLwo-089Y3T0BqwdD34LSbfr2FsxR3SVRKG6JPHI-AKvXE9-jTIDT6eN2B8SZ5psAFfPZzHZH12ejX_lC2_fDyfz5ZZK8S0yrDSaqNlrWRRatASWglCC4koeTmF6UawQmOVXhZZxVQtGShWqhxgo9uyOCZvD6q9d9cDhtjsTWjRWujQDaHhgrO8KGUtE1QcoK13IXjUTe_NHvxdk7NmTLVJqTZ_p5pobx4chs0e1W_SrxgToDoAbp2N6MN3O9yib3YINu7-py3-Qb3HlUWdccbz9HsYy9JOjj8BR8zD-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420135696</pqid></control><display><type>article</type><title>Machine Learning Applied to Registry Data: Development of a Patient-Specific Prediction Model for Blood Transfusion Requirements During Craniofacial Surgery Using the Pediatric Craniofacial Perioperative Registry Dataset</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jalali, Ali ; Lonsdale, Hannah ; Zamora, Lillian V. ; Ahumada, Luis ; Nguyen, Anh Thy H. ; Rehman, Mohamed ; Fackler, James ; Stricker, Paul A. ; Fernandez, Allison M.</creator><creatorcontrib>Jalali, Ali ; Lonsdale, Hannah ; Zamora, Lillian V. ; Ahumada, Luis ; Nguyen, Anh Thy H. ; Rehman, Mohamed ; Fackler, James ; Stricker, Paul A. ; Fernandez, Allison M. ; Pediatric Craniofacial Collaborative Group</creatorcontrib><description>BACKGROUND:Craniosynostosis is the premature fusion of ≥1 cranial sutures and often requires surgical intervention. Surgery may involve extensive osteotomies, which can lead to substantial blood loss. Currently, there are no consensus recommendations for guiding blood conservation or transfusion in this patient population. The aim of this study is to develop a machine-learning model to predict blood product transfusion requirements for individual pediatric patients undergoing craniofacial surgery. METHODS:Using data from 2143 patients in the Pediatric Craniofacial Surgery Perioperative Registry, we assessed 6 machine-learning classification and regression models based on random forest, adaptive boosting (AdaBoost), neural network, gradient boosting machine (GBM), support vector machine, and elastic net methods with inputs from 22 demographic and preoperative features. We developed classification models to predict an individual’s overall need for transfusion and regression models to predict the number of blood product units to be ordered preoperatively. The study is reported according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist for prediction model development. RESULTS:The GBM performed best in both domains, with an area under receiver operating characteristic curve of 0.87 ± 0.03 (95% confidence interval) and F-score of 0.91 ± 0.04 for classification, and a mean squared error of 1.15 ± 0.12, R-squared (R) of 0.73 ± 0.02, and root mean squared error of 1.05 ± 0.06 for regression. GBM feature ranking determined that the following variables held the most information for predictionplatelet count, weight, preoperative hematocrit, surgical volume per institution, age, and preoperative hemoglobin. We then produced a calculator to show the number of units of blood that should be ordered preoperatively for an individual patient. CONCLUSIONS:Anesthesiologists and surgeons can use this continually evolving predictive model to improve clinical care of patients presenting for craniosynostosis surgery.</description><identifier>ISSN: 0003-2999</identifier><identifier>EISSN: 1526-7598</identifier><identifier>DOI: 10.1213/ANE.0000000000004988</identifier><identifier>PMID: 32618624</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkin</publisher><subject>Blood Transfusion - trends ; Child, Preschool ; Craniosynostoses - diagnosis ; Craniosynostoses - surgery ; Databases, Factual - trends ; Female ; Humans ; Infant ; Infant, Newborn ; Machine Learning - trends ; Male ; Perioperative Care - methods ; Perioperative Care - trends ; Prognosis ; Prospective Studies ; Registries</subject><ispartof>Anesthesia and analgesia, 2021-01, Vol.132 (1), p.160-171</ispartof><rights>Lippincott Williams &amp; Wilkin</rights><rights>2021 International Anesthesia Research Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4478-e8fdbf69d635faf6ac6a4f46ee6257a7b403fe8152e080d960ad05d1aabfc53</citedby><cites>FETCH-LOGICAL-c4478-e8fdbf69d635faf6ac6a4f46ee6257a7b403fe8152e080d960ad05d1aabfc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&amp;NEWS=n&amp;CSC=Y&amp;PAGE=fulltext&amp;D=ovft&amp;AN=00000539-202101000-00024$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>314,776,780,4595,27901,27902,65206</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32618624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jalali, Ali</creatorcontrib><creatorcontrib>Lonsdale, Hannah</creatorcontrib><creatorcontrib>Zamora, Lillian V.</creatorcontrib><creatorcontrib>Ahumada, Luis</creatorcontrib><creatorcontrib>Nguyen, Anh Thy H.</creatorcontrib><creatorcontrib>Rehman, Mohamed</creatorcontrib><creatorcontrib>Fackler, James</creatorcontrib><creatorcontrib>Stricker, Paul A.</creatorcontrib><creatorcontrib>Fernandez, Allison M.</creatorcontrib><creatorcontrib>Pediatric Craniofacial Collaborative Group</creatorcontrib><title>Machine Learning Applied to Registry Data: Development of a Patient-Specific Prediction Model for Blood Transfusion Requirements During Craniofacial Surgery Using the Pediatric Craniofacial Perioperative Registry Dataset</title><title>Anesthesia and analgesia</title><addtitle>Anesth Analg</addtitle><description>BACKGROUND:Craniosynostosis is the premature fusion of ≥1 cranial sutures and often requires surgical intervention. Surgery may involve extensive osteotomies, which can lead to substantial blood loss. Currently, there are no consensus recommendations for guiding blood conservation or transfusion in this patient population. The aim of this study is to develop a machine-learning model to predict blood product transfusion requirements for individual pediatric patients undergoing craniofacial surgery. METHODS:Using data from 2143 patients in the Pediatric Craniofacial Surgery Perioperative Registry, we assessed 6 machine-learning classification and regression models based on random forest, adaptive boosting (AdaBoost), neural network, gradient boosting machine (GBM), support vector machine, and elastic net methods with inputs from 22 demographic and preoperative features. We developed classification models to predict an individual’s overall need for transfusion and regression models to predict the number of blood product units to be ordered preoperatively. The study is reported according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist for prediction model development. RESULTS:The GBM performed best in both domains, with an area under receiver operating characteristic curve of 0.87 ± 0.03 (95% confidence interval) and F-score of 0.91 ± 0.04 for classification, and a mean squared error of 1.15 ± 0.12, R-squared (R) of 0.73 ± 0.02, and root mean squared error of 1.05 ± 0.06 for regression. GBM feature ranking determined that the following variables held the most information for predictionplatelet count, weight, preoperative hematocrit, surgical volume per institution, age, and preoperative hemoglobin. We then produced a calculator to show the number of units of blood that should be ordered preoperatively for an individual patient. CONCLUSIONS:Anesthesiologists and surgeons can use this continually evolving predictive model to improve clinical care of patients presenting for craniosynostosis surgery.</description><subject>Blood Transfusion - trends</subject><subject>Child, Preschool</subject><subject>Craniosynostoses - diagnosis</subject><subject>Craniosynostoses - surgery</subject><subject>Databases, Factual - trends</subject><subject>Female</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Machine Learning - trends</subject><subject>Male</subject><subject>Perioperative Care - methods</subject><subject>Perioperative Care - trends</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Registries</subject><issn>0003-2999</issn><issn>1526-7598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUt1u0zAUthCIlcEbIORLbjIcx3ET7kq7waQOqnVcR6fxcWtw48x2Nu1deRicdSDGBViyrOPz_Rz5MyGvc3aS87x4N_t8esL-WKKuqidkkpdcZtOyrp6SSbotMl7X9RF5EcK3VOasks_JUcFlXkkuJuTHBbQ70yFdIvjOdFs663trUNHo6CVuTYj-ji4gwnu6wBu0rt9jF6nTFOgKoklFtu6xNdq0dOVRmTYa19ELp9BS7Tz9YJ1T9MpDF_QQxt4lXg_G4ygU6GLwo-089Y3T0BqwdD34LSbfr2FsxR3SVRKG6JPHI-AKvXE9-jTIDT6eN2B8SZ5psAFfPZzHZH12ejX_lC2_fDyfz5ZZK8S0yrDSaqNlrWRRatASWglCC4koeTmF6UawQmOVXhZZxVQtGShWqhxgo9uyOCZvD6q9d9cDhtjsTWjRWujQDaHhgrO8KGUtE1QcoK13IXjUTe_NHvxdk7NmTLVJqTZ_p5pobx4chs0e1W_SrxgToDoAbp2N6MN3O9yib3YINu7-py3-Qb3HlUWdccbz9HsYy9JOjj8BR8zD-w</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Jalali, Ali</creator><creator>Lonsdale, Hannah</creator><creator>Zamora, Lillian V.</creator><creator>Ahumada, Luis</creator><creator>Nguyen, Anh Thy H.</creator><creator>Rehman, Mohamed</creator><creator>Fackler, James</creator><creator>Stricker, Paul A.</creator><creator>Fernandez, Allison M.</creator><general>Lippincott Williams &amp; Wilkin</general><general>International Anesthesia Research Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202101</creationdate><title>Machine Learning Applied to Registry Data: Development of a Patient-Specific Prediction Model for Blood Transfusion Requirements During Craniofacial Surgery Using the Pediatric Craniofacial Perioperative Registry Dataset</title><author>Jalali, Ali ; Lonsdale, Hannah ; Zamora, Lillian V. ; Ahumada, Luis ; Nguyen, Anh Thy H. ; Rehman, Mohamed ; Fackler, James ; Stricker, Paul A. ; Fernandez, Allison M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4478-e8fdbf69d635faf6ac6a4f46ee6257a7b403fe8152e080d960ad05d1aabfc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood Transfusion - trends</topic><topic>Child, Preschool</topic><topic>Craniosynostoses - diagnosis</topic><topic>Craniosynostoses - surgery</topic><topic>Databases, Factual - trends</topic><topic>Female</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Machine Learning - trends</topic><topic>Male</topic><topic>Perioperative Care - methods</topic><topic>Perioperative Care - trends</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Registries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalali, Ali</creatorcontrib><creatorcontrib>Lonsdale, Hannah</creatorcontrib><creatorcontrib>Zamora, Lillian V.</creatorcontrib><creatorcontrib>Ahumada, Luis</creatorcontrib><creatorcontrib>Nguyen, Anh Thy H.</creatorcontrib><creatorcontrib>Rehman, Mohamed</creatorcontrib><creatorcontrib>Fackler, James</creatorcontrib><creatorcontrib>Stricker, Paul A.</creatorcontrib><creatorcontrib>Fernandez, Allison M.</creatorcontrib><creatorcontrib>Pediatric Craniofacial Collaborative Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Anesthesia and analgesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalali, Ali</au><au>Lonsdale, Hannah</au><au>Zamora, Lillian V.</au><au>Ahumada, Luis</au><au>Nguyen, Anh Thy H.</au><au>Rehman, Mohamed</au><au>Fackler, James</au><au>Stricker, Paul A.</au><au>Fernandez, Allison M.</au><aucorp>Pediatric Craniofacial Collaborative Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Applied to Registry Data: Development of a Patient-Specific Prediction Model for Blood Transfusion Requirements During Craniofacial Surgery Using the Pediatric Craniofacial Perioperative Registry Dataset</atitle><jtitle>Anesthesia and analgesia</jtitle><addtitle>Anesth Analg</addtitle><date>2021-01</date><risdate>2021</risdate><volume>132</volume><issue>1</issue><spage>160</spage><epage>171</epage><pages>160-171</pages><issn>0003-2999</issn><eissn>1526-7598</eissn><abstract>BACKGROUND:Craniosynostosis is the premature fusion of ≥1 cranial sutures and often requires surgical intervention. Surgery may involve extensive osteotomies, which can lead to substantial blood loss. Currently, there are no consensus recommendations for guiding blood conservation or transfusion in this patient population. The aim of this study is to develop a machine-learning model to predict blood product transfusion requirements for individual pediatric patients undergoing craniofacial surgery. METHODS:Using data from 2143 patients in the Pediatric Craniofacial Surgery Perioperative Registry, we assessed 6 machine-learning classification and regression models based on random forest, adaptive boosting (AdaBoost), neural network, gradient boosting machine (GBM), support vector machine, and elastic net methods with inputs from 22 demographic and preoperative features. We developed classification models to predict an individual’s overall need for transfusion and regression models to predict the number of blood product units to be ordered preoperatively. The study is reported according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist for prediction model development. RESULTS:The GBM performed best in both domains, with an area under receiver operating characteristic curve of 0.87 ± 0.03 (95% confidence interval) and F-score of 0.91 ± 0.04 for classification, and a mean squared error of 1.15 ± 0.12, R-squared (R) of 0.73 ± 0.02, and root mean squared error of 1.05 ± 0.06 for regression. GBM feature ranking determined that the following variables held the most information for predictionplatelet count, weight, preoperative hematocrit, surgical volume per institution, age, and preoperative hemoglobin. We then produced a calculator to show the number of units of blood that should be ordered preoperatively for an individual patient. CONCLUSIONS:Anesthesiologists and surgeons can use this continually evolving predictive model to improve clinical care of patients presenting for craniosynostosis surgery.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkin</pub><pmid>32618624</pmid><doi>10.1213/ANE.0000000000004988</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2999
ispartof Anesthesia and analgesia, 2021-01, Vol.132 (1), p.160-171
issn 0003-2999
1526-7598
language eng
recordid cdi_proquest_miscellaneous_2420135696
source MEDLINE; Journals@Ovid LWW Legacy Archive; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Blood Transfusion - trends
Child, Preschool
Craniosynostoses - diagnosis
Craniosynostoses - surgery
Databases, Factual - trends
Female
Humans
Infant
Infant, Newborn
Machine Learning - trends
Male
Perioperative Care - methods
Perioperative Care - trends
Prognosis
Prospective Studies
Registries
title Machine Learning Applied to Registry Data: Development of a Patient-Specific Prediction Model for Blood Transfusion Requirements During Craniofacial Surgery Using the Pediatric Craniofacial Perioperative Registry Dataset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Applied%20to%20Registry%20Data:%20Development%20of%20a%20Patient-Specific%20Prediction%20Model%20for%20Blood%20Transfusion%20Requirements%20During%20Craniofacial%20Surgery%20Using%20the%20Pediatric%20Craniofacial%20Perioperative%20Registry%20Dataset&rft.jtitle=Anesthesia%20and%20analgesia&rft.au=Jalali,%20Ali&rft.aucorp=Pediatric%20Craniofacial%20Collaborative%20Group&rft.date=2021-01&rft.volume=132&rft.issue=1&rft.spage=160&rft.epage=171&rft.pages=160-171&rft.issn=0003-2999&rft.eissn=1526-7598&rft_id=info:doi/10.1213/ANE.0000000000004988&rft_dat=%3Cproquest_cross%3E2420135696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420135696&rft_id=info:pmid/32618624&rfr_iscdi=true