Approximate Solution of Unsteady Groundwater Flows

Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 1986-10, Vol.112 (10), p.971-975
1. Verfasser: Onyegegbu, Samuel O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 10
container_start_page 971
container_title Journal of hydraulic engineering (New York, N.Y.)
container_volume 112
creator Onyegegbu, Samuel O
description Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence to be determined from the governing equations. The governing nonlinear partial differential equation is thus reduced to a nonlinear ordinary differential equation whose exact solution is easily obtained. Results obtained using second-order profiles for both the sudden buildup case and the sudden drawdown case compare well with experimental data.
doi_str_mv 10.1061/(ASCE)0733-9429(1986)112:10(971)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24198839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24198839</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-7f240dee9c0e0390d71950a2efc359c81b763fa4884d58141eac633a145897c43</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEuXnHTIg1A6Be20ntllQVUoBVTAAA5NlHEcqCnGxEwFvj0OBlcVXlo8-3-8QMkY4QSjxdDy9n80nIBjLFadqjEqWE0R6hjBWAidbZISKs1wogG0y-gN3yV6MLwDISyVHhE7X6-A_Vq-mc9m9b_pu5dvM19ljGztnqs9sEXzfVu_pPWSXjX-PB2SnNk10hz9znzxezh9mV_nybnE9my5zw6HoclFTDpVzyoIDpqASqAow1NWWFcpKfBYlqw2XkleFRI7O2JIxg7yQSljO9snxJjct-Na72OnXVbSuaUzrfB815amzZOpfEJkEDpQm8HwD2uBjDK7W65Cah0-NoAerWg9W9SBLD7L0YFUnqwOQrKaEo5-vTLSmqYNp7Sr-xYhUhqNI2NMGS5TTL74PbTKlb67mtxcSknykMIzhSLHwffnd4Z8VvgDFho74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13804022</pqid></control><display><type>article</type><title>Approximate Solution of Unsteady Groundwater Flows</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Onyegegbu, Samuel O</creator><creatorcontrib>Onyegegbu, Samuel O</creatorcontrib><description>Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence to be determined from the governing equations. The governing nonlinear partial differential equation is thus reduced to a nonlinear ordinary differential equation whose exact solution is easily obtained. Results obtained using second-order profiles for both the sudden buildup case and the sudden drawdown case compare well with experimental data.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)0733-9429(1986)112:10(971)</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Exact sciences and technology ; TECHNICAL NOTES ; Water supply. Pipings. Water treatment</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 1986-10, Vol.112 (10), p.971-975</ispartof><rights>Copyright © 1986 ASCE</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a405t-7f240dee9c0e0390d71950a2efc359c81b763fa4884d58141eac633a145897c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9429(1986)112:10(971)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9429(1986)112:10(971)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,75942,75950</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7884417$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Onyegegbu, Samuel O</creatorcontrib><title>Approximate Solution of Unsteady Groundwater Flows</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence to be determined from the governing equations. The governing nonlinear partial differential equation is thus reduced to a nonlinear ordinary differential equation whose exact solution is easily obtained. Results obtained using second-order profiles for both the sudden buildup case and the sudden drawdown case compare well with experimental data.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Exact sciences and technology</subject><subject>TECHNICAL NOTES</subject><subject>Water supply. Pipings. Water treatment</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEuXnHTIg1A6Be20ntllQVUoBVTAAA5NlHEcqCnGxEwFvj0OBlcVXlo8-3-8QMkY4QSjxdDy9n80nIBjLFadqjEqWE0R6hjBWAidbZISKs1wogG0y-gN3yV6MLwDISyVHhE7X6-A_Vq-mc9m9b_pu5dvM19ljGztnqs9sEXzfVu_pPWSXjX-PB2SnNk10hz9znzxezh9mV_nybnE9my5zw6HoclFTDpVzyoIDpqASqAow1NWWFcpKfBYlqw2XkleFRI7O2JIxg7yQSljO9snxJjct-Na72OnXVbSuaUzrfB815amzZOpfEJkEDpQm8HwD2uBjDK7W65Cah0-NoAerWg9W9SBLD7L0YFUnqwOQrKaEo5-vTLSmqYNp7Sr-xYhUhqNI2NMGS5TTL74PbTKlb67mtxcSknykMIzhSLHwffnd4Z8VvgDFho74</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>Onyegegbu, Samuel O</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19861001</creationdate><title>Approximate Solution of Unsteady Groundwater Flows</title><author>Onyegegbu, Samuel O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-7f240dee9c0e0390d71950a2efc359c81b763fa4884d58141eac633a145897c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Exact sciences and technology</topic><topic>TECHNICAL NOTES</topic><topic>Water supply. Pipings. Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onyegegbu, Samuel O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onyegegbu, Samuel O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Solution of Unsteady Groundwater Flows</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>1986-10-01</date><risdate>1986</risdate><volume>112</volume><issue>10</issue><spage>971</spage><epage>975</epage><pages>971-975</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence to be determined from the governing equations. The governing nonlinear partial differential equation is thus reduced to a nonlinear ordinary differential equation whose exact solution is easily obtained. Results obtained using second-order profiles for both the sudden buildup case and the sudden drawdown case compare well with experimental data.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9429(1986)112:10(971)</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9429
ispartof Journal of hydraulic engineering (New York, N.Y.), 1986-10, Vol.112 (10), p.971-975
issn 0733-9429
1943-7900
language eng
recordid cdi_proquest_miscellaneous_24198839
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Applied sciences
Buildings. Public works
Exact sciences and technology
TECHNICAL NOTES
Water supply. Pipings. Water treatment
title Approximate Solution of Unsteady Groundwater Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Solution%20of%20Unsteady%20Groundwater%20Flows&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Onyegegbu,%20Samuel%20O&rft.date=1986-10-01&rft.volume=112&rft.issue=10&rft.spage=971&rft.epage=975&rft.pages=971-975&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)0733-9429(1986)112:10(971)&rft_dat=%3Cproquest_cross%3E24198839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13804022&rft_id=info:pmid/&rfr_iscdi=true