Approximate Solution of Unsteady Groundwater Flows
Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence t...
Gespeichert in:
Veröffentlicht in: | Journal of hydraulic engineering (New York, N.Y.) N.Y.), 1986-10, Vol.112 (10), p.971-975 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | 10 |
container_start_page | 971 |
container_title | Journal of hydraulic engineering (New York, N.Y.) |
container_volume | 112 |
creator | Onyegegbu, Samuel O |
description | Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence to be determined from the governing equations. The governing nonlinear partial differential equation is thus reduced to a nonlinear ordinary differential equation whose exact solution is easily obtained. Results obtained using second-order profiles for both the sudden buildup case and the sudden drawdown case compare well with experimental data. |
doi_str_mv | 10.1061/(ASCE)0733-9429(1986)112:10(971) |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24198839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24198839</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-7f240dee9c0e0390d71950a2efc359c81b763fa4884d58141eac633a145897c43</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEuXnHTIg1A6Be20ntllQVUoBVTAAA5NlHEcqCnGxEwFvj0OBlcVXlo8-3-8QMkY4QSjxdDy9n80nIBjLFadqjEqWE0R6hjBWAidbZISKs1wogG0y-gN3yV6MLwDISyVHhE7X6-A_Vq-mc9m9b_pu5dvM19ljGztnqs9sEXzfVu_pPWSXjX-PB2SnNk10hz9znzxezh9mV_nybnE9my5zw6HoclFTDpVzyoIDpqASqAow1NWWFcpKfBYlqw2XkleFRI7O2JIxg7yQSljO9snxJjct-Na72OnXVbSuaUzrfB815amzZOpfEJkEDpQm8HwD2uBjDK7W65Cah0-NoAerWg9W9SBLD7L0YFUnqwOQrKaEo5-vTLSmqYNp7Sr-xYhUhqNI2NMGS5TTL74PbTKlb67mtxcSknykMIzhSLHwffnd4Z8VvgDFho74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13804022</pqid></control><display><type>article</type><title>Approximate Solution of Unsteady Groundwater Flows</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Onyegegbu, Samuel O</creator><creatorcontrib>Onyegegbu, Samuel O</creatorcontrib><description>Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence to be determined from the governing equations. The governing nonlinear partial differential equation is thus reduced to a nonlinear ordinary differential equation whose exact solution is easily obtained. Results obtained using second-order profiles for both the sudden buildup case and the sudden drawdown case compare well with experimental data.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)0733-9429(1986)112:10(971)</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Exact sciences and technology ; TECHNICAL NOTES ; Water supply. Pipings. Water treatment</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 1986-10, Vol.112 (10), p.971-975</ispartof><rights>Copyright © 1986 ASCE</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a405t-7f240dee9c0e0390d71950a2efc359c81b763fa4884d58141eac633a145897c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9429(1986)112:10(971)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9429(1986)112:10(971)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,75942,75950</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7884417$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Onyegegbu, Samuel O</creatorcontrib><title>Approximate Solution of Unsteady Groundwater Flows</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence to be determined from the governing equations. The governing nonlinear partial differential equation is thus reduced to a nonlinear ordinary differential equation whose exact solution is easily obtained. Results obtained using second-order profiles for both the sudden buildup case and the sudden drawdown case compare well with experimental data.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Exact sciences and technology</subject><subject>TECHNICAL NOTES</subject><subject>Water supply. Pipings. Water treatment</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEuXnHTIg1A6Be20ntllQVUoBVTAAA5NlHEcqCnGxEwFvj0OBlcVXlo8-3-8QMkY4QSjxdDy9n80nIBjLFadqjEqWE0R6hjBWAidbZISKs1wogG0y-gN3yV6MLwDISyVHhE7X6-A_Vq-mc9m9b_pu5dvM19ljGztnqs9sEXzfVu_pPWSXjX-PB2SnNk10hz9znzxezh9mV_nybnE9my5zw6HoclFTDpVzyoIDpqASqAow1NWWFcpKfBYlqw2XkleFRI7O2JIxg7yQSljO9snxJjct-Na72OnXVbSuaUzrfB815amzZOpfEJkEDpQm8HwD2uBjDK7W65Cah0-NoAerWg9W9SBLD7L0YFUnqwOQrKaEo5-vTLSmqYNp7Sr-xYhUhqNI2NMGS5TTL74PbTKlb67mtxcSknykMIzhSLHwffnd4Z8VvgDFho74</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>Onyegegbu, Samuel O</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19861001</creationdate><title>Approximate Solution of Unsteady Groundwater Flows</title><author>Onyegegbu, Samuel O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-7f240dee9c0e0390d71950a2efc359c81b763fa4884d58141eac633a145897c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Exact sciences and technology</topic><topic>TECHNICAL NOTES</topic><topic>Water supply. Pipings. Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onyegegbu, Samuel O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onyegegbu, Samuel O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Solution of Unsteady Groundwater Flows</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>1986-10-01</date><risdate>1986</risdate><volume>112</volume><issue>10</issue><spage>971</spage><epage>975</epage><pages>971-975</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>Kantorovich's method for obtaining approximate solutions to problems of unsteady diffusion of heat and momentum is applied to unsteady ground water seepage flow problems. Simple profiles satisfying free surface boundary conditions in the spatial domain are assumed, leaving the time dependence to be determined from the governing equations. The governing nonlinear partial differential equation is thus reduced to a nonlinear ordinary differential equation whose exact solution is easily obtained. Results obtained using second-order profiles for both the sudden buildup case and the sudden drawdown case compare well with experimental data.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9429(1986)112:10(971)</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9429 |
ispartof | Journal of hydraulic engineering (New York, N.Y.), 1986-10, Vol.112 (10), p.971-975 |
issn | 0733-9429 1943-7900 |
language | eng |
recordid | cdi_proquest_miscellaneous_24198839 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Applied sciences Buildings. Public works Exact sciences and technology TECHNICAL NOTES Water supply. Pipings. Water treatment |
title | Approximate Solution of Unsteady Groundwater Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Solution%20of%20Unsteady%20Groundwater%20Flows&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Onyegegbu,%20Samuel%20O&rft.date=1986-10-01&rft.volume=112&rft.issue=10&rft.spage=971&rft.epage=975&rft.pages=971-975&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)0733-9429(1986)112:10(971)&rft_dat=%3Cproquest_cross%3E24198839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13804022&rft_id=info:pmid/&rfr_iscdi=true |