Total Synthesis of Mallotusinin
The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously re...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2020-12, Vol.26 (69), p.16408-16421 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16421 |
---|---|
container_issue | 69 |
container_start_page | 16408 |
container_title | Chemistry : a European journal |
container_volume | 26 |
creator | Yamashita, Kohei Kume, Yuji Ashibe, Seiya Puspita, Cicilia A. D. Tanigawa, Kotaro Michihata, Naoki Wakamori, Shinnosuke Ikeuchi, Kazutada Yamada, Hidetoshi |
description | The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously reported method to synthesize corilagin; 2) establishment of the THDBF skeleton via an unusual intramolecular SNAr reaction of an HHDP analogue, and 3) the application of a two‐step bislactonization strategy for a HHDP bridge construction into the 2,4‐O‐THDBF bridge. Oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose and the orthoester cleavage of the coupling product without the pyranose‐furanose ring transformation are key reactions for the improved synthesis of corilagin, which enabled the adequate supply of a corilagin precursor that was required to develop the mallotusinin synthesis. These established methods are expected to help develop the synthesis of other ellagitannins with a bridge between the two oxygens of corilagin.
Synthesis of mallotusinin: The total synthesis of mallotusinin via the second‐generation synthesis of corilagin is described. The key steps are as follows: 1) oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose; 2) orthoester cleavage along with thioglycosylation followed by β‐selective glycosyl esterification; and 3) two‐step bislactonization to construct a 2,4‐O‐tetrahydroxydibenzofuranoyl bridge on corilagin. |
doi_str_mv | 10.1002/chem.202002753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2419716018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468098939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5603-35a0d3f1b14ec7eb74c90a5699185f7b321da2a780beb1d352d9247c171060193</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EoqWwMkIlFpaUOzu24xFV5UNqxUCZLcdx1FROUuJEqP-eVC1FYmG6G949nR4h1wgTBKAPduXKCQXa75KzEzJETjFiUvBTMgQVy0hwpgbkIoQ1ACjB2DkZMCowBgVDcrusW-PH79uqXblQhHGdjxfG-7rtQlEV1SU5y40P7uowR-TjabacvkTzt-fX6eM8slwAixg3kLEcU4ydlS6VsVVguFAKE57LlFHMDDUygdSlmDFOM0VjaVEiCEDFRuR-79009WfnQqvLIljnvalc3QVNY1QSezTp0bs_6Lrumqr_rqdEAipRbCec7Cnb1CE0LtebpihNs9UIepdO79LpY7r-4Oag7dLSZUf8p1UPqD3wVXi3_Uenpy-zxa_8GxSWdzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468098939</pqid></control><display><type>article</type><title>Total Synthesis of Mallotusinin</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yamashita, Kohei ; Kume, Yuji ; Ashibe, Seiya ; Puspita, Cicilia A. D. ; Tanigawa, Kotaro ; Michihata, Naoki ; Wakamori, Shinnosuke ; Ikeuchi, Kazutada ; Yamada, Hidetoshi</creator><creatorcontrib>Yamashita, Kohei ; Kume, Yuji ; Ashibe, Seiya ; Puspita, Cicilia A. D. ; Tanigawa, Kotaro ; Michihata, Naoki ; Wakamori, Shinnosuke ; Ikeuchi, Kazutada ; Yamada, Hidetoshi</creatorcontrib><description>The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously reported method to synthesize corilagin; 2) establishment of the THDBF skeleton via an unusual intramolecular SNAr reaction of an HHDP analogue, and 3) the application of a two‐step bislactonization strategy for a HHDP bridge construction into the 2,4‐O‐THDBF bridge. Oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose and the orthoester cleavage of the coupling product without the pyranose‐furanose ring transformation are key reactions for the improved synthesis of corilagin, which enabled the adequate supply of a corilagin precursor that was required to develop the mallotusinin synthesis. These established methods are expected to help develop the synthesis of other ellagitannins with a bridge between the two oxygens of corilagin.
Synthesis of mallotusinin: The total synthesis of mallotusinin via the second‐generation synthesis of corilagin is described. The key steps are as follows: 1) oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose; 2) orthoester cleavage along with thioglycosylation followed by β‐selective glycosyl esterification; and 3) two‐step bislactonization to construct a 2,4‐O‐tetrahydroxydibenzofuranoyl bridge on corilagin.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202002753</identifier><identifier>PMID: 32614090</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bridge construction ; Bridges ; Chemical synthesis ; Chemistry ; Coupling ; Highway construction ; intramolecular SNAr reactions ; lactones ; natural products ; Oxygen ; Phenols ; total synthesis</subject><ispartof>Chemistry : a European journal, 2020-12, Vol.26 (69), p.16408-16421</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5603-35a0d3f1b14ec7eb74c90a5699185f7b321da2a780beb1d352d9247c171060193</citedby><cites>FETCH-LOGICAL-c5603-35a0d3f1b14ec7eb74c90a5699185f7b321da2a780beb1d352d9247c171060193</cites><orcidid>0000-0003-2272-319X ; 0000-0002-0544-9486 ; 0000-0001-5343-3502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202002753$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202002753$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32614090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamashita, Kohei</creatorcontrib><creatorcontrib>Kume, Yuji</creatorcontrib><creatorcontrib>Ashibe, Seiya</creatorcontrib><creatorcontrib>Puspita, Cicilia A. D.</creatorcontrib><creatorcontrib>Tanigawa, Kotaro</creatorcontrib><creatorcontrib>Michihata, Naoki</creatorcontrib><creatorcontrib>Wakamori, Shinnosuke</creatorcontrib><creatorcontrib>Ikeuchi, Kazutada</creatorcontrib><creatorcontrib>Yamada, Hidetoshi</creatorcontrib><title>Total Synthesis of Mallotusinin</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously reported method to synthesize corilagin; 2) establishment of the THDBF skeleton via an unusual intramolecular SNAr reaction of an HHDP analogue, and 3) the application of a two‐step bislactonization strategy for a HHDP bridge construction into the 2,4‐O‐THDBF bridge. Oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose and the orthoester cleavage of the coupling product without the pyranose‐furanose ring transformation are key reactions for the improved synthesis of corilagin, which enabled the adequate supply of a corilagin precursor that was required to develop the mallotusinin synthesis. These established methods are expected to help develop the synthesis of other ellagitannins with a bridge between the two oxygens of corilagin.
Synthesis of mallotusinin: The total synthesis of mallotusinin via the second‐generation synthesis of corilagin is described. The key steps are as follows: 1) oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose; 2) orthoester cleavage along with thioglycosylation followed by β‐selective glycosyl esterification; and 3) two‐step bislactonization to construct a 2,4‐O‐tetrahydroxydibenzofuranoyl bridge on corilagin.</description><subject>Bridge construction</subject><subject>Bridges</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Coupling</subject><subject>Highway construction</subject><subject>intramolecular SNAr reactions</subject><subject>lactones</subject><subject>natural products</subject><subject>Oxygen</subject><subject>Phenols</subject><subject>total synthesis</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EoqWwMkIlFpaUOzu24xFV5UNqxUCZLcdx1FROUuJEqP-eVC1FYmG6G949nR4h1wgTBKAPduXKCQXa75KzEzJETjFiUvBTMgQVy0hwpgbkIoQ1ACjB2DkZMCowBgVDcrusW-PH79uqXblQhHGdjxfG-7rtQlEV1SU5y40P7uowR-TjabacvkTzt-fX6eM8slwAixg3kLEcU4ydlS6VsVVguFAKE57LlFHMDDUygdSlmDFOM0VjaVEiCEDFRuR-79009WfnQqvLIljnvalc3QVNY1QSezTp0bs_6Lrumqr_rqdEAipRbCec7Cnb1CE0LtebpihNs9UIepdO79LpY7r-4Oag7dLSZUf8p1UPqD3wVXi3_Uenpy-zxa_8GxSWdzg</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Yamashita, Kohei</creator><creator>Kume, Yuji</creator><creator>Ashibe, Seiya</creator><creator>Puspita, Cicilia A. D.</creator><creator>Tanigawa, Kotaro</creator><creator>Michihata, Naoki</creator><creator>Wakamori, Shinnosuke</creator><creator>Ikeuchi, Kazutada</creator><creator>Yamada, Hidetoshi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2272-319X</orcidid><orcidid>https://orcid.org/0000-0002-0544-9486</orcidid><orcidid>https://orcid.org/0000-0001-5343-3502</orcidid></search><sort><creationdate>20201209</creationdate><title>Total Synthesis of Mallotusinin</title><author>Yamashita, Kohei ; Kume, Yuji ; Ashibe, Seiya ; Puspita, Cicilia A. D. ; Tanigawa, Kotaro ; Michihata, Naoki ; Wakamori, Shinnosuke ; Ikeuchi, Kazutada ; Yamada, Hidetoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5603-35a0d3f1b14ec7eb74c90a5699185f7b321da2a780beb1d352d9247c171060193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bridge construction</topic><topic>Bridges</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Coupling</topic><topic>Highway construction</topic><topic>intramolecular SNAr reactions</topic><topic>lactones</topic><topic>natural products</topic><topic>Oxygen</topic><topic>Phenols</topic><topic>total synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Kohei</creatorcontrib><creatorcontrib>Kume, Yuji</creatorcontrib><creatorcontrib>Ashibe, Seiya</creatorcontrib><creatorcontrib>Puspita, Cicilia A. D.</creatorcontrib><creatorcontrib>Tanigawa, Kotaro</creatorcontrib><creatorcontrib>Michihata, Naoki</creatorcontrib><creatorcontrib>Wakamori, Shinnosuke</creatorcontrib><creatorcontrib>Ikeuchi, Kazutada</creatorcontrib><creatorcontrib>Yamada, Hidetoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, Kohei</au><au>Kume, Yuji</au><au>Ashibe, Seiya</au><au>Puspita, Cicilia A. D.</au><au>Tanigawa, Kotaro</au><au>Michihata, Naoki</au><au>Wakamori, Shinnosuke</au><au>Ikeuchi, Kazutada</au><au>Yamada, Hidetoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Synthesis of Mallotusinin</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>26</volume><issue>69</issue><spage>16408</spage><epage>16421</epage><pages>16408-16421</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously reported method to synthesize corilagin; 2) establishment of the THDBF skeleton via an unusual intramolecular SNAr reaction of an HHDP analogue, and 3) the application of a two‐step bislactonization strategy for a HHDP bridge construction into the 2,4‐O‐THDBF bridge. Oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose and the orthoester cleavage of the coupling product without the pyranose‐furanose ring transformation are key reactions for the improved synthesis of corilagin, which enabled the adequate supply of a corilagin precursor that was required to develop the mallotusinin synthesis. These established methods are expected to help develop the synthesis of other ellagitannins with a bridge between the two oxygens of corilagin.
Synthesis of mallotusinin: The total synthesis of mallotusinin via the second‐generation synthesis of corilagin is described. The key steps are as follows: 1) oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose; 2) orthoester cleavage along with thioglycosylation followed by β‐selective glycosyl esterification; and 3) two‐step bislactonization to construct a 2,4‐O‐tetrahydroxydibenzofuranoyl bridge on corilagin.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32614090</pmid><doi>10.1002/chem.202002753</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2272-319X</orcidid><orcidid>https://orcid.org/0000-0002-0544-9486</orcidid><orcidid>https://orcid.org/0000-0001-5343-3502</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2020-12, Vol.26 (69), p.16408-16421 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2419716018 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bridge construction Bridges Chemical synthesis Chemistry Coupling Highway construction intramolecular SNAr reactions lactones natural products Oxygen Phenols total synthesis |
title | Total Synthesis of Mallotusinin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Synthesis%20of%20Mallotusinin&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Yamashita,%20Kohei&rft.date=2020-12-09&rft.volume=26&rft.issue=69&rft.spage=16408&rft.epage=16421&rft.pages=16408-16421&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202002753&rft_dat=%3Cproquest_cross%3E2468098939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468098939&rft_id=info:pmid/32614090&rfr_iscdi=true |