Total Synthesis of Mallotusinin

The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2020-12, Vol.26 (69), p.16408-16421
Hauptverfasser: Yamashita, Kohei, Kume, Yuji, Ashibe, Seiya, Puspita, Cicilia A. D., Tanigawa, Kotaro, Michihata, Naoki, Wakamori, Shinnosuke, Ikeuchi, Kazutada, Yamada, Hidetoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16421
container_issue 69
container_start_page 16408
container_title Chemistry : a European journal
container_volume 26
creator Yamashita, Kohei
Kume, Yuji
Ashibe, Seiya
Puspita, Cicilia A. D.
Tanigawa, Kotaro
Michihata, Naoki
Wakamori, Shinnosuke
Ikeuchi, Kazutada
Yamada, Hidetoshi
description The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously reported method to synthesize corilagin; 2) establishment of the THDBF skeleton via an unusual intramolecular SNAr reaction of an HHDP analogue, and 3) the application of a two‐step bislactonization strategy for a HHDP bridge construction into the 2,4‐O‐THDBF bridge. Oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose and the orthoester cleavage of the coupling product without the pyranose‐furanose ring transformation are key reactions for the improved synthesis of corilagin, which enabled the adequate supply of a corilagin precursor that was required to develop the mallotusinin synthesis. These established methods are expected to help develop the synthesis of other ellagitannins with a bridge between the two oxygens of corilagin. Synthesis of mallotusinin: The total synthesis of mallotusinin via the second‐generation synthesis of corilagin is described. The key steps are as follows: 1) oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose; 2) orthoester cleavage along with thioglycosylation followed by β‐selective glycosyl esterification; and 3) two‐step bislactonization to construct a 2,4‐O‐tetrahydroxydibenzofuranoyl bridge on corilagin.
doi_str_mv 10.1002/chem.202002753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2419716018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468098939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5603-35a0d3f1b14ec7eb74c90a5699185f7b321da2a780beb1d352d9247c171060193</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EoqWwMkIlFpaUOzu24xFV5UNqxUCZLcdx1FROUuJEqP-eVC1FYmG6G949nR4h1wgTBKAPduXKCQXa75KzEzJETjFiUvBTMgQVy0hwpgbkIoQ1ACjB2DkZMCowBgVDcrusW-PH79uqXblQhHGdjxfG-7rtQlEV1SU5y40P7uowR-TjabacvkTzt-fX6eM8slwAixg3kLEcU4ydlS6VsVVguFAKE57LlFHMDDUygdSlmDFOM0VjaVEiCEDFRuR-79009WfnQqvLIljnvalc3QVNY1QSezTp0bs_6Lrumqr_rqdEAipRbCec7Cnb1CE0LtebpihNs9UIepdO79LpY7r-4Oag7dLSZUf8p1UPqD3wVXi3_Uenpy-zxa_8GxSWdzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468098939</pqid></control><display><type>article</type><title>Total Synthesis of Mallotusinin</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yamashita, Kohei ; Kume, Yuji ; Ashibe, Seiya ; Puspita, Cicilia A. D. ; Tanigawa, Kotaro ; Michihata, Naoki ; Wakamori, Shinnosuke ; Ikeuchi, Kazutada ; Yamada, Hidetoshi</creator><creatorcontrib>Yamashita, Kohei ; Kume, Yuji ; Ashibe, Seiya ; Puspita, Cicilia A. D. ; Tanigawa, Kotaro ; Michihata, Naoki ; Wakamori, Shinnosuke ; Ikeuchi, Kazutada ; Yamada, Hidetoshi</creatorcontrib><description>The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously reported method to synthesize corilagin; 2) establishment of the THDBF skeleton via an unusual intramolecular SNAr reaction of an HHDP analogue, and 3) the application of a two‐step bislactonization strategy for a HHDP bridge construction into the 2,4‐O‐THDBF bridge. Oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose and the orthoester cleavage of the coupling product without the pyranose‐furanose ring transformation are key reactions for the improved synthesis of corilagin, which enabled the adequate supply of a corilagin precursor that was required to develop the mallotusinin synthesis. These established methods are expected to help develop the synthesis of other ellagitannins with a bridge between the two oxygens of corilagin. Synthesis of mallotusinin: The total synthesis of mallotusinin via the second‐generation synthesis of corilagin is described. The key steps are as follows: 1) oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose; 2) orthoester cleavage along with thioglycosylation followed by β‐selective glycosyl esterification; and 3) two‐step bislactonization to construct a 2,4‐O‐tetrahydroxydibenzofuranoyl bridge on corilagin.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202002753</identifier><identifier>PMID: 32614090</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bridge construction ; Bridges ; Chemical synthesis ; Chemistry ; Coupling ; Highway construction ; intramolecular SNAr reactions ; lactones ; natural products ; Oxygen ; Phenols ; total synthesis</subject><ispartof>Chemistry : a European journal, 2020-12, Vol.26 (69), p.16408-16421</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5603-35a0d3f1b14ec7eb74c90a5699185f7b321da2a780beb1d352d9247c171060193</citedby><cites>FETCH-LOGICAL-c5603-35a0d3f1b14ec7eb74c90a5699185f7b321da2a780beb1d352d9247c171060193</cites><orcidid>0000-0003-2272-319X ; 0000-0002-0544-9486 ; 0000-0001-5343-3502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202002753$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202002753$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32614090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamashita, Kohei</creatorcontrib><creatorcontrib>Kume, Yuji</creatorcontrib><creatorcontrib>Ashibe, Seiya</creatorcontrib><creatorcontrib>Puspita, Cicilia A. D.</creatorcontrib><creatorcontrib>Tanigawa, Kotaro</creatorcontrib><creatorcontrib>Michihata, Naoki</creatorcontrib><creatorcontrib>Wakamori, Shinnosuke</creatorcontrib><creatorcontrib>Ikeuchi, Kazutada</creatorcontrib><creatorcontrib>Yamada, Hidetoshi</creatorcontrib><title>Total Synthesis of Mallotusinin</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously reported method to synthesize corilagin; 2) establishment of the THDBF skeleton via an unusual intramolecular SNAr reaction of an HHDP analogue, and 3) the application of a two‐step bislactonization strategy for a HHDP bridge construction into the 2,4‐O‐THDBF bridge. Oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose and the orthoester cleavage of the coupling product without the pyranose‐furanose ring transformation are key reactions for the improved synthesis of corilagin, which enabled the adequate supply of a corilagin precursor that was required to develop the mallotusinin synthesis. These established methods are expected to help develop the synthesis of other ellagitannins with a bridge between the two oxygens of corilagin. Synthesis of mallotusinin: The total synthesis of mallotusinin via the second‐generation synthesis of corilagin is described. The key steps are as follows: 1) oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose; 2) orthoester cleavage along with thioglycosylation followed by β‐selective glycosyl esterification; and 3) two‐step bislactonization to construct a 2,4‐O‐tetrahydroxydibenzofuranoyl bridge on corilagin.</description><subject>Bridge construction</subject><subject>Bridges</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Coupling</subject><subject>Highway construction</subject><subject>intramolecular SNAr reactions</subject><subject>lactones</subject><subject>natural products</subject><subject>Oxygen</subject><subject>Phenols</subject><subject>total synthesis</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EoqWwMkIlFpaUOzu24xFV5UNqxUCZLcdx1FROUuJEqP-eVC1FYmG6G949nR4h1wgTBKAPduXKCQXa75KzEzJETjFiUvBTMgQVy0hwpgbkIoQ1ACjB2DkZMCowBgVDcrusW-PH79uqXblQhHGdjxfG-7rtQlEV1SU5y40P7uowR-TjabacvkTzt-fX6eM8slwAixg3kLEcU4ydlS6VsVVguFAKE57LlFHMDDUygdSlmDFOM0VjaVEiCEDFRuR-79009WfnQqvLIljnvalc3QVNY1QSezTp0bs_6Lrumqr_rqdEAipRbCec7Cnb1CE0LtebpihNs9UIepdO79LpY7r-4Oag7dLSZUf8p1UPqD3wVXi3_Uenpy-zxa_8GxSWdzg</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Yamashita, Kohei</creator><creator>Kume, Yuji</creator><creator>Ashibe, Seiya</creator><creator>Puspita, Cicilia A. D.</creator><creator>Tanigawa, Kotaro</creator><creator>Michihata, Naoki</creator><creator>Wakamori, Shinnosuke</creator><creator>Ikeuchi, Kazutada</creator><creator>Yamada, Hidetoshi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2272-319X</orcidid><orcidid>https://orcid.org/0000-0002-0544-9486</orcidid><orcidid>https://orcid.org/0000-0001-5343-3502</orcidid></search><sort><creationdate>20201209</creationdate><title>Total Synthesis of Mallotusinin</title><author>Yamashita, Kohei ; Kume, Yuji ; Ashibe, Seiya ; Puspita, Cicilia A. D. ; Tanigawa, Kotaro ; Michihata, Naoki ; Wakamori, Shinnosuke ; Ikeuchi, Kazutada ; Yamada, Hidetoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5603-35a0d3f1b14ec7eb74c90a5699185f7b321da2a780beb1d352d9247c171060193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bridge construction</topic><topic>Bridges</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Coupling</topic><topic>Highway construction</topic><topic>intramolecular SNAr reactions</topic><topic>lactones</topic><topic>natural products</topic><topic>Oxygen</topic><topic>Phenols</topic><topic>total synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Kohei</creatorcontrib><creatorcontrib>Kume, Yuji</creatorcontrib><creatorcontrib>Ashibe, Seiya</creatorcontrib><creatorcontrib>Puspita, Cicilia A. D.</creatorcontrib><creatorcontrib>Tanigawa, Kotaro</creatorcontrib><creatorcontrib>Michihata, Naoki</creatorcontrib><creatorcontrib>Wakamori, Shinnosuke</creatorcontrib><creatorcontrib>Ikeuchi, Kazutada</creatorcontrib><creatorcontrib>Yamada, Hidetoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, Kohei</au><au>Kume, Yuji</au><au>Ashibe, Seiya</au><au>Puspita, Cicilia A. D.</au><au>Tanigawa, Kotaro</au><au>Michihata, Naoki</au><au>Wakamori, Shinnosuke</au><au>Ikeuchi, Kazutada</au><au>Yamada, Hidetoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Synthesis of Mallotusinin</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>26</volume><issue>69</issue><spage>16408</spage><epage>16421</epage><pages>16408-16421</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The total synthesis of mallotusinin, which bears a tetrahydroxydibenzofuranoyl (THDBF) bridge between the 2‐oxygen and 4‐oxygen of glucose on corilagin with a 3,6‐O‐(R)‐hexahydroxydiphenoyl (HHDP) bridge, is described. The key features of the total synthesis are: 1) improvements of our previously reported method to synthesize corilagin; 2) establishment of the THDBF skeleton via an unusual intramolecular SNAr reaction of an HHDP analogue, and 3) the application of a two‐step bislactonization strategy for a HHDP bridge construction into the 2,4‐O‐THDBF bridge. Oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose and the orthoester cleavage of the coupling product without the pyranose‐furanose ring transformation are key reactions for the improved synthesis of corilagin, which enabled the adequate supply of a corilagin precursor that was required to develop the mallotusinin synthesis. These established methods are expected to help develop the synthesis of other ellagitannins with a bridge between the two oxygens of corilagin. Synthesis of mallotusinin: The total synthesis of mallotusinin via the second‐generation synthesis of corilagin is described. The key steps are as follows: 1) oxidative phenol coupling of 1,2,4‐orthoacetyl‐3,6‐di‐(4‐O‐benzylgalloyl)‐α‐d‐glucopyranose; 2) orthoester cleavage along with thioglycosylation followed by β‐selective glycosyl esterification; and 3) two‐step bislactonization to construct a 2,4‐O‐tetrahydroxydibenzofuranoyl bridge on corilagin.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32614090</pmid><doi>10.1002/chem.202002753</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2272-319X</orcidid><orcidid>https://orcid.org/0000-0002-0544-9486</orcidid><orcidid>https://orcid.org/0000-0001-5343-3502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-12, Vol.26 (69), p.16408-16421
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2419716018
source Wiley Online Library Journals Frontfile Complete
subjects Bridge construction
Bridges
Chemical synthesis
Chemistry
Coupling
Highway construction
intramolecular SNAr reactions
lactones
natural products
Oxygen
Phenols
total synthesis
title Total Synthesis of Mallotusinin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Synthesis%20of%20Mallotusinin&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Yamashita,%20Kohei&rft.date=2020-12-09&rft.volume=26&rft.issue=69&rft.spage=16408&rft.epage=16421&rft.pages=16408-16421&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202002753&rft_dat=%3Cproquest_cross%3E2468098939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468098939&rft_id=info:pmid/32614090&rfr_iscdi=true