Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230

Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccine 2020-07, Vol.38 (34), p.5480-5489
Hauptverfasser: Scaria, Puthupparampil V., Chen, Beth B., Rowe, Christopher G., Alani, Nada, Muratova, Olga V., Barnafo, Emma K., Lambert, Lynn E., Zaidi, Irfan U., Lees, Andrew, Rausch, Kelly M., Narum, David L., Duffy, Patrick E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5489
container_issue 34
container_start_page 5480
container_title Vaccine
container_volume 38
creator Scaria, Puthupparampil V.
Chen, Beth B.
Rowe, Christopher G.
Alani, Nada
Muratova, Olga V.
Barnafo, Emma K.
Lambert, Lynn E.
Zaidi, Irfan U.
Lees, Andrew
Rausch, Kelly M.
Narum, David L.
Duffy, Patrick E.
description Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of these poorly immunogenic antigens to carrier proteins enhances their immunogenicity, and conjugates of these antigens to Exoprotein A (EPA) are currently under evaluation in clinical trials. Nonetheless, more potent carriers may augment the immunogenicity of these antigens for a more efficacious vaccine; here, we evaluate a series of proteins to identify such a carrier. Pfs25 and Pfs230 were chemically conjugated to 4 different carriers [tetanus toxoid (TT), a recombinant fragment of tetanus toxin heavy chain (rTThc), recombinant CRM197 produced in Pseudomonas fluorescens (CRM197) or in E. coli (EcoCRM®)] and compared to EPA conjugates in mouse immunogenicity studies. Conjugates of each antigen formulated in Alhydrogel® elicited similar antibody titers but showed differences in functional activity. At a 0.5 µg dose, Pfs230 conjugated to TT, CRM197 and EcoCRM® showed significantly higher functional activity compared to EPA. When formulated with the more potent adjuvant GLA-LSQ, all 4 alternate conjugates induced higher antibody titers as well as increased functional activity compared to the EPA conjugate. IgG subclass analysis of Pfs230 conjugates showed no carrier-dependent differences in the IgG profile. While Alhydrogel® formulations induced a Th2 dominant immune response, GLA-LSQ formulations induced a mixed Th1/Th2 response.
doi_str_mv 10.1016/j.vaccine.2020.06.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2419086107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264410X20307908</els_id><sourcerecordid>2422717436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-da20aecd23b11e220bad4dfd3f0a3d301c458007311b729fadf41b2e32c154873</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxYMo7uzqR1ACXjzYbVXSf08ig67Cgh4UvIV0Uj2k7U7GpHvBb2_GGT148ZQEfq9S7z3GniGUCNi8nsp7bYzzVAoQUEJTAnYP2A67Vhaixu4h24FoqqJC-HbFrlOaAKCW2D9mV1I0AD3KHZv3YTnq6FLwPIzc6BgdRX6MYSXnE18DN8FP20GvxBc9Z1TzNWqfFpeSy6phDua78wd-2Ydrv7oD-fSKfx6TqPPb_r5JeMIejXpO9PRy3rCv79992X8o7j7dfty_vSuM7OVaWC1Ak7FCDogkBAzaVna0cgQtrQQ0Vd0BtBJxaEU_ajtWOAiSwmBdZf837OV5brbxY6O0qrysoXnWnsKWlKiwh65BOKEv_kGnsEWft8uUEC22lWwyVZ8pE0NKkUZ1jG7R8adCUKc61KQu9tWpDgWNynVk3fPL9G1YyP5V_ck_A2_OAOU47nPyKhlH3pB1kcyqbHD_-eIXH7Gd8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422717436</pqid></control><display><type>article</type><title>Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Scaria, Puthupparampil V. ; Chen, Beth B. ; Rowe, Christopher G. ; Alani, Nada ; Muratova, Olga V. ; Barnafo, Emma K. ; Lambert, Lynn E. ; Zaidi, Irfan U. ; Lees, Andrew ; Rausch, Kelly M. ; Narum, David L. ; Duffy, Patrick E.</creator><creatorcontrib>Scaria, Puthupparampil V. ; Chen, Beth B. ; Rowe, Christopher G. ; Alani, Nada ; Muratova, Olga V. ; Barnafo, Emma K. ; Lambert, Lynn E. ; Zaidi, Irfan U. ; Lees, Andrew ; Rausch, Kelly M. ; Narum, David L. ; Duffy, Patrick E.</creatorcontrib><description>Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of these poorly immunogenic antigens to carrier proteins enhances their immunogenicity, and conjugates of these antigens to Exoprotein A (EPA) are currently under evaluation in clinical trials. Nonetheless, more potent carriers may augment the immunogenicity of these antigens for a more efficacious vaccine; here, we evaluate a series of proteins to identify such a carrier. Pfs25 and Pfs230 were chemically conjugated to 4 different carriers [tetanus toxoid (TT), a recombinant fragment of tetanus toxin heavy chain (rTThc), recombinant CRM197 produced in Pseudomonas fluorescens (CRM197) or in E. coli (EcoCRM®)] and compared to EPA conjugates in mouse immunogenicity studies. Conjugates of each antigen formulated in Alhydrogel® elicited similar antibody titers but showed differences in functional activity. At a 0.5 µg dose, Pfs230 conjugated to TT, CRM197 and EcoCRM® showed significantly higher functional activity compared to EPA. When formulated with the more potent adjuvant GLA-LSQ, all 4 alternate conjugates induced higher antibody titers as well as increased functional activity compared to the EPA conjugate. IgG subclass analysis of Pfs230 conjugates showed no carrier-dependent differences in the IgG profile. While Alhydrogel® formulations induced a Th2 dominant immune response, GLA-LSQ formulations induced a mixed Th1/Th2 response.</description><identifier>ISSN: 0264-410X</identifier><identifier>EISSN: 1873-2518</identifier><identifier>DOI: 10.1016/j.vaccine.2020.06.018</identifier><identifier>PMID: 32600913</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Amino acids ; Animals ; Antibodies ; Antibodies, Protozoan ; Antigens ; Antigens, Protozoan ; Bacterial infections ; Carrier protein ; Carrier Proteins ; Chromatography ; Clinical trials ; Conjugates ; Conjugation ; Disease transmission ; E coli ; Escherichia coli - metabolism ; Immune response ; Immune system ; Immunization ; Immunogenicity ; Immunoglobulin G ; Infections ; Infectious diseases ; Lymphocytes T ; Malaria ; Malaria Vaccines ; Malaria, Falciparum - prevention &amp; control ; Mice ; Mosquitoes ; Parasites ; Pfs230 ; Pfs25 ; Plasmodium falciparum ; Proteins ; Protozoan Proteins - metabolism ; Pseudomonas fluorescens ; Tetanus ; Tetanus toxin ; Toxins ; Transmission-blocking vaccine ; Vaccines ; Vector-borne diseases</subject><ispartof>Vaccine, 2020-07, Vol.38 (34), p.5480-5489</ispartof><rights>2020</rights><rights>Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited Jul 22, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-da20aecd23b11e220bad4dfd3f0a3d301c458007311b729fadf41b2e32c154873</citedby><cites>FETCH-LOGICAL-c393t-da20aecd23b11e220bad4dfd3f0a3d301c458007311b729fadf41b2e32c154873</cites><orcidid>0000-0002-8370-4876 ; 0000-0003-3041-5402 ; 0000-0002-4483-5005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0264410X20307908$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32600913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scaria, Puthupparampil V.</creatorcontrib><creatorcontrib>Chen, Beth B.</creatorcontrib><creatorcontrib>Rowe, Christopher G.</creatorcontrib><creatorcontrib>Alani, Nada</creatorcontrib><creatorcontrib>Muratova, Olga V.</creatorcontrib><creatorcontrib>Barnafo, Emma K.</creatorcontrib><creatorcontrib>Lambert, Lynn E.</creatorcontrib><creatorcontrib>Zaidi, Irfan U.</creatorcontrib><creatorcontrib>Lees, Andrew</creatorcontrib><creatorcontrib>Rausch, Kelly M.</creatorcontrib><creatorcontrib>Narum, David L.</creatorcontrib><creatorcontrib>Duffy, Patrick E.</creatorcontrib><title>Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230</title><title>Vaccine</title><addtitle>Vaccine</addtitle><description>Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of these poorly immunogenic antigens to carrier proteins enhances their immunogenicity, and conjugates of these antigens to Exoprotein A (EPA) are currently under evaluation in clinical trials. Nonetheless, more potent carriers may augment the immunogenicity of these antigens for a more efficacious vaccine; here, we evaluate a series of proteins to identify such a carrier. Pfs25 and Pfs230 were chemically conjugated to 4 different carriers [tetanus toxoid (TT), a recombinant fragment of tetanus toxin heavy chain (rTThc), recombinant CRM197 produced in Pseudomonas fluorescens (CRM197) or in E. coli (EcoCRM®)] and compared to EPA conjugates in mouse immunogenicity studies. Conjugates of each antigen formulated in Alhydrogel® elicited similar antibody titers but showed differences in functional activity. At a 0.5 µg dose, Pfs230 conjugated to TT, CRM197 and EcoCRM® showed significantly higher functional activity compared to EPA. When formulated with the more potent adjuvant GLA-LSQ, all 4 alternate conjugates induced higher antibody titers as well as increased functional activity compared to the EPA conjugate. IgG subclass analysis of Pfs230 conjugates showed no carrier-dependent differences in the IgG profile. While Alhydrogel® formulations induced a Th2 dominant immune response, GLA-LSQ formulations induced a mixed Th1/Th2 response.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Protozoan</subject><subject>Antigens</subject><subject>Antigens, Protozoan</subject><subject>Bacterial infections</subject><subject>Carrier protein</subject><subject>Carrier Proteins</subject><subject>Chromatography</subject><subject>Clinical trials</subject><subject>Conjugates</subject><subject>Conjugation</subject><subject>Disease transmission</subject><subject>E coli</subject><subject>Escherichia coli - metabolism</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunization</subject><subject>Immunogenicity</subject><subject>Immunoglobulin G</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Lymphocytes T</subject><subject>Malaria</subject><subject>Malaria Vaccines</subject><subject>Malaria, Falciparum - prevention &amp; control</subject><subject>Mice</subject><subject>Mosquitoes</subject><subject>Parasites</subject><subject>Pfs230</subject><subject>Pfs25</subject><subject>Plasmodium falciparum</subject><subject>Proteins</subject><subject>Protozoan Proteins - metabolism</subject><subject>Pseudomonas fluorescens</subject><subject>Tetanus</subject><subject>Tetanus toxin</subject><subject>Toxins</subject><subject>Transmission-blocking vaccine</subject><subject>Vaccines</subject><subject>Vector-borne diseases</subject><issn>0264-410X</issn><issn>1873-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU-LFDEQxYMo7uzqR1ACXjzYbVXSf08ig67Cgh4UvIV0Uj2k7U7GpHvBb2_GGT148ZQEfq9S7z3GniGUCNi8nsp7bYzzVAoQUEJTAnYP2A67Vhaixu4h24FoqqJC-HbFrlOaAKCW2D9mV1I0AD3KHZv3YTnq6FLwPIzc6BgdRX6MYSXnE18DN8FP20GvxBc9Z1TzNWqfFpeSy6phDua78wd-2Ydrv7oD-fSKfx6TqPPb_r5JeMIejXpO9PRy3rCv79992X8o7j7dfty_vSuM7OVaWC1Ak7FCDogkBAzaVna0cgQtrQQ0Vd0BtBJxaEU_ajtWOAiSwmBdZf837OV5brbxY6O0qrysoXnWnsKWlKiwh65BOKEv_kGnsEWft8uUEC22lWwyVZ8pE0NKkUZ1jG7R8adCUKc61KQu9tWpDgWNynVk3fPL9G1YyP5V_ck_A2_OAOU47nPyKhlH3pB1kcyqbHD_-eIXH7Gd8w</recordid><startdate>20200722</startdate><enddate>20200722</enddate><creator>Scaria, Puthupparampil V.</creator><creator>Chen, Beth B.</creator><creator>Rowe, Christopher G.</creator><creator>Alani, Nada</creator><creator>Muratova, Olga V.</creator><creator>Barnafo, Emma K.</creator><creator>Lambert, Lynn E.</creator><creator>Zaidi, Irfan U.</creator><creator>Lees, Andrew</creator><creator>Rausch, Kelly M.</creator><creator>Narum, David L.</creator><creator>Duffy, Patrick E.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8370-4876</orcidid><orcidid>https://orcid.org/0000-0003-3041-5402</orcidid><orcidid>https://orcid.org/0000-0002-4483-5005</orcidid></search><sort><creationdate>20200722</creationdate><title>Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230</title><author>Scaria, Puthupparampil V. ; Chen, Beth B. ; Rowe, Christopher G. ; Alani, Nada ; Muratova, Olga V. ; Barnafo, Emma K. ; Lambert, Lynn E. ; Zaidi, Irfan U. ; Lees, Andrew ; Rausch, Kelly M. ; Narum, David L. ; Duffy, Patrick E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-da20aecd23b11e220bad4dfd3f0a3d301c458007311b729fadf41b2e32c154873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Protozoan</topic><topic>Antigens</topic><topic>Antigens, Protozoan</topic><topic>Bacterial infections</topic><topic>Carrier protein</topic><topic>Carrier Proteins</topic><topic>Chromatography</topic><topic>Clinical trials</topic><topic>Conjugates</topic><topic>Conjugation</topic><topic>Disease transmission</topic><topic>E coli</topic><topic>Escherichia coli - metabolism</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunization</topic><topic>Immunogenicity</topic><topic>Immunoglobulin G</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Lymphocytes T</topic><topic>Malaria</topic><topic>Malaria Vaccines</topic><topic>Malaria, Falciparum - prevention &amp; control</topic><topic>Mice</topic><topic>Mosquitoes</topic><topic>Parasites</topic><topic>Pfs230</topic><topic>Pfs25</topic><topic>Plasmodium falciparum</topic><topic>Proteins</topic><topic>Protozoan Proteins - metabolism</topic><topic>Pseudomonas fluorescens</topic><topic>Tetanus</topic><topic>Tetanus toxin</topic><topic>Toxins</topic><topic>Transmission-blocking vaccine</topic><topic>Vaccines</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scaria, Puthupparampil V.</creatorcontrib><creatorcontrib>Chen, Beth B.</creatorcontrib><creatorcontrib>Rowe, Christopher G.</creatorcontrib><creatorcontrib>Alani, Nada</creatorcontrib><creatorcontrib>Muratova, Olga V.</creatorcontrib><creatorcontrib>Barnafo, Emma K.</creatorcontrib><creatorcontrib>Lambert, Lynn E.</creatorcontrib><creatorcontrib>Zaidi, Irfan U.</creatorcontrib><creatorcontrib>Lees, Andrew</creatorcontrib><creatorcontrib>Rausch, Kelly M.</creatorcontrib><creatorcontrib>Narum, David L.</creatorcontrib><creatorcontrib>Duffy, Patrick E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Vaccine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scaria, Puthupparampil V.</au><au>Chen, Beth B.</au><au>Rowe, Christopher G.</au><au>Alani, Nada</au><au>Muratova, Olga V.</au><au>Barnafo, Emma K.</au><au>Lambert, Lynn E.</au><au>Zaidi, Irfan U.</au><au>Lees, Andrew</au><au>Rausch, Kelly M.</au><au>Narum, David L.</au><au>Duffy, Patrick E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230</atitle><jtitle>Vaccine</jtitle><addtitle>Vaccine</addtitle><date>2020-07-22</date><risdate>2020</risdate><volume>38</volume><issue>34</issue><spage>5480</spage><epage>5489</epage><pages>5480-5489</pages><issn>0264-410X</issn><eissn>1873-2518</eissn><abstract>Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of these poorly immunogenic antigens to carrier proteins enhances their immunogenicity, and conjugates of these antigens to Exoprotein A (EPA) are currently under evaluation in clinical trials. Nonetheless, more potent carriers may augment the immunogenicity of these antigens for a more efficacious vaccine; here, we evaluate a series of proteins to identify such a carrier. Pfs25 and Pfs230 were chemically conjugated to 4 different carriers [tetanus toxoid (TT), a recombinant fragment of tetanus toxin heavy chain (rTThc), recombinant CRM197 produced in Pseudomonas fluorescens (CRM197) or in E. coli (EcoCRM®)] and compared to EPA conjugates in mouse immunogenicity studies. Conjugates of each antigen formulated in Alhydrogel® elicited similar antibody titers but showed differences in functional activity. At a 0.5 µg dose, Pfs230 conjugated to TT, CRM197 and EcoCRM® showed significantly higher functional activity compared to EPA. When formulated with the more potent adjuvant GLA-LSQ, all 4 alternate conjugates induced higher antibody titers as well as increased functional activity compared to the EPA conjugate. IgG subclass analysis of Pfs230 conjugates showed no carrier-dependent differences in the IgG profile. While Alhydrogel® formulations induced a Th2 dominant immune response, GLA-LSQ formulations induced a mixed Th1/Th2 response.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>32600913</pmid><doi>10.1016/j.vaccine.2020.06.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8370-4876</orcidid><orcidid>https://orcid.org/0000-0003-3041-5402</orcidid><orcidid>https://orcid.org/0000-0002-4483-5005</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-410X
ispartof Vaccine, 2020-07, Vol.38 (34), p.5480-5489
issn 0264-410X
1873-2518
language eng
recordid cdi_proquest_miscellaneous_2419086107
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amino acids
Animals
Antibodies
Antibodies, Protozoan
Antigens
Antigens, Protozoan
Bacterial infections
Carrier protein
Carrier Proteins
Chromatography
Clinical trials
Conjugates
Conjugation
Disease transmission
E coli
Escherichia coli - metabolism
Immune response
Immune system
Immunization
Immunogenicity
Immunoglobulin G
Infections
Infectious diseases
Lymphocytes T
Malaria
Malaria Vaccines
Malaria, Falciparum - prevention & control
Mice
Mosquitoes
Parasites
Pfs230
Pfs25
Plasmodium falciparum
Proteins
Protozoan Proteins - metabolism
Pseudomonas fluorescens
Tetanus
Tetanus toxin
Toxins
Transmission-blocking vaccine
Vaccines
Vector-borne diseases
title Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20carrier%20proteins%20to%20conjugate%20malaria%20transmission%20blocking%20vaccine%20antigens,%20Pfs25%20and%20Pfs230&rft.jtitle=Vaccine&rft.au=Scaria,%20Puthupparampil%20V.&rft.date=2020-07-22&rft.volume=38&rft.issue=34&rft.spage=5480&rft.epage=5489&rft.pages=5480-5489&rft.issn=0264-410X&rft.eissn=1873-2518&rft_id=info:doi/10.1016/j.vaccine.2020.06.018&rft_dat=%3Cproquest_cross%3E2422717436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422717436&rft_id=info:pmid/32600913&rft_els_id=S0264410X20307908&rfr_iscdi=true